IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v41y2021i1d10.1007_s10669-020-09794-9.html
   My bibliography  Save this article

Forecast of environment systems using expert judgements: performance comparison between the possibilistic and the classical model

Author

Listed:
  • Jeremy Rohmer

    (BRGM)

  • Eric Chojnacki

    (PSN-RES/SEMIA/LSMA, Cadarache)

Abstract

Expert judgment is widely used to inform forecasts (e.g. using the 5th, 50th and 95th percentile of some variable of interest) for a large variety of applications related to environment systems. This task can rely on Cooke’s classical model (CM) within the probabilistic framework, and consists in combining expert information after a preliminary step where experts are weighted using calibration and informativeness scores estimated using some seed questions for which the answers can be obtained. In the literature, an alternative model (PM) has been proposed using a different framework to process the information supplied by experts, namely possibility theory. In the present study, we assess whether both models perform similarly when the seed questions are different from those used to determine the scores, i.e. by taking the viewpoint of forecast. Using an extensive out-of-sample validation procedure, two aspects are investigated using 33 expert datasets: (1) robustness to the set of calibration questions used to estimate the scores, i.e. whether the best and worst performing expert differs; (2) forecast performance, i.e. the degree of accuracy and informativeness of the derived forecast intervals. Regarding (1), the validation procedure shows that PM is less sensitive. Regarding (2), PM achieves more accuracy but with less informativeness when the averaging operator is used. Interestingly, the differences with CM only remain of moderate magnitude for the considered cases despite the conceptual dissimilarities of both models and their lack of agreement on the selection of the best performing expert.

Suggested Citation

  • Jeremy Rohmer & Eric Chojnacki, 2021. "Forecast of environment systems using expert judgements: performance comparison between the possibilistic and the classical model," Environment Systems and Decisions, Springer, vol. 41(1), pages 131-146, March.
  • Handle: RePEc:spr:envsyd:v:41:y:2021:i:1:d:10.1007_s10669-020-09794-9
    DOI: 10.1007/s10669-020-09794-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-020-09794-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-020-09794-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Marc Tacnet & Jean Dezert & Corinne Curt & Mireille Batton-Hubert & Eric Chojnacki, 2014. "How to manage natural risks in mountain areas in a context of imperfect information? New frameworks and paradigms for expert assessments and decision-making," Environment Systems and Decisions, Springer, vol. 34(2), pages 288-311, June.
    2. Bolger, Fergus & Onkal-Atay, Dilek, 2004. "The effects of feedback on judgmental interval predictions," International Journal of Forecasting, Elsevier, vol. 20(1), pages 29-39.
    3. Willy Aspinall, 2010. "A route to more tractable expert advice," Nature, Nature, vol. 463(7279), pages 294-295, January.
    4. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    5. John Quigley & Abigail Colson & Willy Aspinall & Roger M. Cooke, 2018. "Elicitation in the Classical Model," International Series in Operations Research & Management Science, in: Luis C. Dias & Alec Morton & John Quigley (ed.), Elicitation, chapter 0, pages 15-36, Springer.
    6. Colson, Abigail R. & Cooke, Roger M., 2017. "Cross validation for the classical model of structured expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 109-120.
    7. Baudrit, C. & Dubois, D., 2006. "Practical representations of incomplete probabilistic knowledge," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 86-108, November.
    8. Didier Dubois, 2010. "Representation, Propagation, and Decision Issues in Risk Analysis Under Incomplete Probabilistic Information," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 361-368, March.
    9. Lin, Shi-Woei & Bier, Vicki M., 2008. "A study of expert overconfidence," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 711-721.
    10. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    11. William J. Sutherland & Mark Burgman, 2015. "Policy advice: Use experts wisely," Nature, Nature, vol. 526(7573), pages 317-318, October.
    12. André Lannoy & Henri Procaccia, 2014. "Expertise, safety, reliability, and decision making: practical industrial experience," Environment Systems and Decisions, Springer, vol. 34(2), pages 259-276, June.
    13. Abigail R Colson & Roger M Cooke, 2018. "Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 113-132.
    14. Jean Baccou & Eric Chojnacki, 2014. "A practical methodology for information fusion in presence of uncertainty: application to the analysis of a nuclear benchmark," Environment Systems and Decisions, Springer, vol. 34(2), pages 237-248, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary A. Collier & James H. Lambert & Igor Linkov, 2021. "Advanced analytics for environmental resilience and a sustainable future," Environment Systems and Decisions, Springer, vol. 41(1), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hathout, Michel & Vuillet, Marc & Carvajal, Claudio & Peyras, Laurent & Diab, Youssef, 2019. "Expert judgments calibration and combination for assessment of river levee failure probability," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 377-392.
    2. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    3. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Peter Harrison Howard & Derek Sylvan, 2020. "Wisdom of the experts: Using survey responses to address positive and normative uncertainties in climate-economic models," Climatic Change, Springer, vol. 162(2), pages 213-232, September.
    5. Cooke, Roger M., 2014. "Deep and Shallow Uncertainty in Messaging Climate Change," RFF Working Paper Series dp-14-11, Resources for the Future.
    6. Myriam Merad, 2014. "Expertise processes in risk assessment and management: How to improve their governance and their conduct?," Environment Systems and Decisions, Springer, vol. 34(2), pages 181-182, June.
    7. Abigail R Colson & Itamar Megiddo & Gerardo Alvarez-Uria & Sumanth Gandra & Tim Bedford & Alec Morton & Roger M Cooke & Ramanan Laxminarayan, 2019. "Quantifying uncertainty about future antimicrobial resistance: Comparing structured expert judgment and statistical forecasting methods," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
    8. Mohammad Yazdi, 2019. "A review paper to examine the validity of Bayesian network to build rational consensus in subjective probabilistic failure analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(1), pages 1-18, February.
    9. Cooke, Roger M. & Marti, Deniz & Mazzuchi, Thomas, 2021. "Expert forecasting with and without uncertainty quantification and weighting: What do the data say?," International Journal of Forecasting, Elsevier, vol. 37(1), pages 378-387.
    10. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    11. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    12. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    13. Hanea, D.M. & Jagtman, H.M. & van Alphen, L.L.M.M. & Ale, B.J.M., 2010. "Quantitative and qualitative analysis of the expert and non-expert opinion in fire risk in buildings," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 729-741.
    14. Martine J. Barons & Lael E. Walsh & Edward E. Salakpi & Linda Nichols, 2024. "A Decision Support System for Sustainable Agriculture and Food Loss Reduction under Uncertain Agricultural Policy Frameworks," Agriculture, MDPI, vol. 14(3), pages 1-21, March.
    15. Colson, Abigail R. & Cooke, Roger M., 2017. "Cross validation for the classical model of structured expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 109-120.
    16. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Nogal, Maria & Morales Nápoles, Oswaldo & O’Connor, Alan, 2019. "Structured expert judgement to understand the intrinsic vulnerability of traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 136-152.
    18. Aven, Terje, 2018. "How the integration of System 1-System 2 thinking and recent risk perspectives can improve risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 237-244.
    19. Schoch-Spana, Monica & Ravi, Sanjana J. & Martin, Elena K., 2022. "Modeling epidemic recovery: An expert elicitation on issues and approaches," Social Science & Medicine, Elsevier, vol. 292(C).
    20. Erin Baker & Olaitan Olaleye, 2013. "Combining Experts: Decomposition and Aggregation Order," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1116-1127, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:41:y:2021:i:1:d:10.1007_s10669-020-09794-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.