IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v38y2018i3d10.1007_s10669-018-9704-7.html
   My bibliography  Save this article

Engineering meets institutions: an interdisciplinary approach to the management of resilience

Author

Listed:
  • Nader Naderpajouh

    (Royal Melbourne Institute of Technology (RMIT University))

  • David J. Yu

    (Purdue University)

  • Daniel P. Aldrich

    (Northeastern University)

  • Igor Linkov

    (Carnegie Melon University
    US Army Engineer Research and Development Center)

  • Juri Matinheikki

    (Aalto University
    RMIT University)

Abstract

Resilience management stretches across the decoupled domains of community, corporate, and public governance. As a result, fostering resilience needs a governance structure that supports collective actions and integrates fragmented fields with different institutional frameworks. In this study, we carry out a review of three different perspectives on resilience -engineering, social, and organizational- in order to explore resilience management in the context of governance of infrastructure systems. We discuss the common practices to address resilience of engineering systems, the need and current trend for integration of institutions into these practices through formal (e.g., policies and regulations) as well as informal mechanisms (e.g., trust, norms, and shared cognitive structures). To illustrate our theorizing, we provide three illustrative case studies. The cases highlight the barriers and enablers across the three perspectives and highlight the inter-organizational context of management of resilience. We uncovered organizational dynamics such as the necessity of establishing critical functionality through organizational capacity for stakeholder engagement, the need for diverse organizations to address institutional complexity in management of resilience, and the importance of decoupling in aligning the outcomes of resilience management practices with policies. We suggest an agenda for future research on managing practices associated with management of resilience.

Suggested Citation

  • Nader Naderpajouh & David J. Yu & Daniel P. Aldrich & Igor Linkov & Juri Matinheikki, 2018. "Engineering meets institutions: an interdisciplinary approach to the management of resilience," Environment Systems and Decisions, Springer, vol. 38(3), pages 306-317, September.
  • Handle: RePEc:spr:envsyd:v:38:y:2018:i:3:d:10.1007_s10669-018-9704-7
    DOI: 10.1007/s10669-018-9704-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-018-9704-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-018-9704-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    2. Juyeong Choi & Abhijeet Deshmukh & Nader Naderpajouh & Makarand Hastak, 2017. "Dynamic relationship between functional stress and strain capacity of post-disaster infrastructure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 817-841, June.
    3. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    4. Stephanie E. Chang & Timothy McDaniels & Jana Fox & Rajan Dhariwal & Holly Longstaff, 2014. "Toward Disaster‐Resilient Cities: Characterizing Resilience of Infrastructure Systems with Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 416-434, March.
    5. Eva Boxenbaum & Stefan Jonsson, 2017. "Isomorphism, diffusion and decoupling: Concept evolution and theoretical challenges," Post-Print hal-01488051, HAL.
    6. Bilal M. Ayyub, 2014. "Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 340-355, February.
    7. W. Neil Adger, 2003. "Social Capital, Collective Action, and Adaptation to Climate Change," Economic Geography, Taylor & Francis Journals, vol. 79(4), pages 387-404, October.
    8. Luciano Barin Cruz & Natalia Aguilar Delgado & Bernard Leca & Jean-Pascal Gond, 2016. "Institutional Resilience in Extreme Operating Environments The Role of Institutional Work," Post-Print hal-01356075, HAL.
    9. Aaron Opdyke & Amy Javernick-Will & Matt Koschmann, 2017. "Infrastructure hazard resilience trends: an analysis of 25 years of research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 773-789, June.
    10. E. Ostrom, 2010. "A Behavioral Approach to the Rational Choice Theory of Collective Action Presidential Address, American political Science Association, 1997," Public administration issues, Higher School of Economics, issue 1, pages 5-52.
    11. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    12. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    13. Ryan J Orr & W Richard Scott, 2008. "Institutional exceptions on global projects: a process model," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 39(4), pages 562-588, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nancy Kete & Giuliano Punzo & Igor Linkov, 2018. "Enhancing resilience within and between critical infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 275-277, September.
    2. Giffoni, Eduarda & Jude, Simon & Smith, Heather M. & Pollard, Simon J.T., 2022. "Real-life resilience: Exploring the organisational environment of international water utilities," Utilities Policy, Elsevier, vol. 79(C).
    3. Yingping Mai & Yenchun Jim Wu & Yu-Min Wang, 2022. "How Does Entrepreneurial Team Relational Governance Promote Social Start-Ups’ Organizational Resilience?," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    4. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Yingping Mai & Wenzhi Zheng & Yenchun Jim Wu & Tse-Ping Dong, 2023. "Impact of Entrepreneurial Team Contractual Governance on New Venture Resilience: The Mediating Role of Resource Bricolage," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    6. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Noah C. Dormady & Robert T. Greenbaum & Kim A. Young, 2021. "An experimental investigation of resilience decision making in repeated disasters," Environment Systems and Decisions, Springer, vol. 41(4), pages 556-576, December.
    8. Susara E. Merwe & Reinette Biggs & Rika Preiser, 2020. "Sensemaking as an approach for resilience assessment in an Essential Service Organization," Environment Systems and Decisions, Springer, vol. 40(1), pages 84-106, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    3. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    5. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    6. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    8. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    11. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Kenneth Martínez & David Claudio, 2023. "Expanding Fundamental Boundaries between Resilience and Survivability in Systems Engineering: A Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    13. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    14. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    17. Patriarca, Riccardo & De Paolis, Alessandro & Costantino, Francesco & Di Gravio, Giulio, 2021. "Simulation model for simple yet robust resilience assessment metrics for engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    18. Amanda Melendez & David Caballero-Russi & Mariantonieta Gutierrez Soto & Luis Felipe Giraldo, 2022. "Computational models of community resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1121-1152, March.
    19. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    20. Juan Zhang & Mingyuan Zhang & Gang Li, 2021. "Multi-stage composition of urban resilience and the influence of pre-disaster urban functionality on urban resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 447-473, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:38:y:2018:i:3:d:10.1007_s10669-018-9704-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.