IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v209y2021ics0951832021000351.html
   My bibliography  Save this article

Simulation model for simple yet robust resilience assessment metrics for engineered systems

Author

Listed:
  • Patriarca, Riccardo
  • De Paolis, Alessandro
  • Costantino, Francesco
  • Di Gravio, Giulio

Abstract

Modelling system properties is a central step to carry out time-dependant simulations of system’ s operating conditions. In this paper, we present a simulation model combined with simple metrics that focus on system's resilience at a technical level, represented through absorption, adaptation and recovery. Following the techno-centric perspective of this research, the components’ reliability is considered as the main performance of interest for the analysis. When a failure occurs following a certain probability, performance is restored after a specified recovery time. This latter is a stochastic variable that relies on recovery functions specific for every component. The model has been applied in a case study referred to a hot water generation plant for hospitals. The case study shows how the model allows depicting performance levels and its flexibility for multiple management strategies, supporting what-if scenarios analyses.

Suggested Citation

  • Patriarca, Riccardo & De Paolis, Alessandro & Costantino, Francesco & Di Gravio, Giulio, 2021. "Simulation model for simple yet robust resilience assessment metrics for engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000351
    DOI: 10.1016/j.ress.2021.107467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yarveisy, Rioshar & Gao, Chuan & Khan, Faisal, 2020. "A simple yet robust resilience assessment metrics," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    4. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    5. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    6. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    7. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    8. Righi, Angela Weber & Saurin, Tarcisio Abreu & Wachs, Priscila, 2015. "A systematic literature review of resilience engineering: Research areas and a research agenda proposal," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 142-152.
    9. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    10. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    11. Bilal M. Ayyub, 2014. "Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 340-355, February.
    12. Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Francesca Dianne B. Solis & Krista Danielle S. Yu & Joost R. Santos, 2015. "A Shock Absorption Index For Inoperability Input-Output Models," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 43-59, March.
    13. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. Maarten Ottens & Maarten Franssen & Peter Kroes & Ibo Van De Poel, 2006. "Modelling infrastructures as socio-technical systems," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 2(2/3), pages 133-145.
    15. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Torabi, S.A. & Baghersad, M. & Mansouri, S.A., 2015. "Resilient supplier selection and order allocation under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 22-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Geng, Sunyue & Yang, Ming & Mitici, Mihaela & Liu, Sifeng, 2023. "A resilience assessment framework for complex engineered systems using graphical evaluation and review technique (GERT)," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Hui Xu & Shuxiu Li & Yongtao Tan & Bin Xing, 2022. "Comprehensive Resilience Assessment of Complex Urban Public Spaces: A Perspective of Promoting Sustainability," Land, MDPI, vol. 11(6), pages 1-23, June.
    5. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    6. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    5. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    11. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    13. Yarveisy, Rioshar & Gao, Chuan & Khan, Faisal, 2020. "A simple yet robust resilience assessment metrics," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    14. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    15. Kenneth Martínez & David Claudio, 2023. "Expanding Fundamental Boundaries between Resilience and Survivability in Systems Engineering: A Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    16. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    17. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Barker, Kash & Moronta, Jose, 2018. "Quantifying the resilience of community structures in networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 466-474.
    18. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    19. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Resilience Measure of Network Systems by Node and Edge Indicators," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.