IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i5d10.1007_s10668-022-02234-5.html
   My bibliography  Save this article

Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry

Author

Listed:
  • Qiang Yue

    (Northeastern University)

  • Xicui Chai

    (Northeastern University)

  • Yujie Zhang

    (Northeastern University)

  • Qi Wang

    (Northeastern University)

  • Heming Wang

    (Northeastern University)

  • Feng Zhao

    (Northeastern University)

  • Wei Ji

    (Northeastern University)

  • Yuqi Lu

    (Northeastern University)

Abstract

China's crude steel output has grown rapidly since 1990, accounting for more than half of worldwide production in 2019. Iron and steel industry (ISI) in China's energy consumption and carbon emissions accounted for a higher proportion. In the context of China's "carbon peak, carbon neutrality", the ISI attaches great importance to energy conservation and emission reduction. The BF-BOF long process is far from meeting the China’s policy needs in terms of energy-saving and emission-reducing targets. Therefore, the short process of EAF based on scrap steel’s recycling and direct reduced iron (DRI)’s production has attracted great attention. The e-p approach and scenarios analysis method were used to research the impact of scrap steel's recycling and DRI's production on energy demand and carbon emissions of China's ISI. By 2050, scenario 4 (30% DRI based on coal gasification–gas plus 70% scrap steel for EAF) will have the lowest energy consumption (1.79 × 1011 kgce) and scenario 3 (30% DRI based on hydrogen plus 70% scrap steel for EAF) will have the lowest carbon emissions (3.42 × 1011 kg). The results show that the short process of EAF based on scrap steel recycling and DRI is an extremely important approach for the sustainable development of China's ISI in the future.

Suggested Citation

  • Qiang Yue & Xicui Chai & Yujie Zhang & Qi Wang & Heming Wang & Feng Zhao & Wei Ji & Yuqi Lu, 2023. "Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4065-4085, May.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02234-5
    DOI: 10.1007/s10668-022-02234-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02234-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02234-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
    2. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    3. Griffin, Paul W. & Hammond, Geoffrey P., 2019. "Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective," Applied Energy, Elsevier, vol. 249(C), pages 109-125.
    4. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    5. Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
    6. Bachner, G. & Mayer, J. & Steininger, K.W. & Anger-Kraavi, A. & Smith, A. & Barker, T.S., 2020. "Uncertainties in macroeconomic assessments of low-carbon transition pathways - The case of the European iron and steel industry," Ecological Economics, Elsevier, vol. 172(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Liu & Ying Ji & Xinqi Li, 2023. "Closed-Loop Supply Chain Network Design with Flexible Capacity under Uncertain Environment," Sustainability, MDPI, vol. 15(19), pages 1-38, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    2. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    3. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    4. Linan Gao & Xiaofei Liu & Xinyi Mei & Guangwei Rui & Jingcheng Li, 2022. "Research on the Spatial-Temporal Distribution Characteristics and Influencing Factors of Carbon Emission Efficiency in China’s Metal Smelting Industry—Based on the Three-Stage DEA Method," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    5. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    6. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    7. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    8. Tolga Balta, M. & Dincer, Ibrahim & Hepbasli, Arif, 2010. "Energy and exergy analyses of a new four-step copper–chlorine cycle for geothermal-based hydrogen production," Energy, Elsevier, vol. 35(8), pages 3263-3272.
    9. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    10. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    11. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    12. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    13. Antoine Godin & Anda David & Oskar Lecuyer & Stéphanie Leyronas, 2022. "A strong sustainability approach to development trajectories," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 381-396, December.
    14. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    15. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    16. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    17. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    18. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    19. Henni, Sarah & Staudt, Philipp & Kandiah, Balendra & Weinhardt, Christof, 2021. "Infrastructural coupling of the electricity and gas distribution grid to reduce renewable energy curtailment," Applied Energy, Elsevier, vol. 288(C).
    20. Lee, Timothy & Fu, Jintao & Basile, Victoria & Corsi, John S. & Wang, Zeyu & Detsi, Eric, 2020. "Activated alumina as value-added byproduct from the hydrolysis of hierarchical nanoporous aluminum with pure water to generate hydrogen fuel," Renewable Energy, Elsevier, vol. 155(C), pages 189-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02234-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.