IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v48y2015i1p61-81.html
   My bibliography  Save this article

Penalized exponential series estimation of copula densities with an application to intergenerational dependence of body mass index

Author

Listed:
  • Yichen Gao
  • Yu Zhang
  • Ximing Wu

Abstract

We propose a penalized maximum likelihood estimator of copula densities that is based on the multivariate exponential series density estimator. We employ an approximate likelihood cross validation method to select the smoothing parameter. We demonstrate the usefulness of the proposed method via Monte Carlo simulations. We apply this method to estimate copula densities between children’s and parents’ body mass indices (BMI). Our results suggest that the dependence relationship is generally asymmetric and stronger for females. We also find a higher intergenerational BMI dependence for low income families. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Yichen Gao & Yu Zhang & Ximing Wu, 2015. "Penalized exponential series estimation of copula densities with an application to intergenerational dependence of body mass index," Empirical Economics, Springer, vol. 48(1), pages 61-81, February.
  • Handle: RePEc:spr:empeco:v:48:y:2015:i:1:p:61-81
    DOI: 10.1007/s00181-014-0858-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-014-0858-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-014-0858-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    2. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    3. Jason Abrevaya & Hongfei Tang, 2011. "Body mass index in families: spousal correlation, endogeneity, and intergenerational transmission," Empirical Economics, Springer, vol. 41(3), pages 841-864, December.
    4. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    5. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    6. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    7. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    8. Chen, Yi-Ting, 2007. "Moment-Based Copula Tests for Financial Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 377-397, October.
    9. Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
    10. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    11. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers CWP67/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference for High-Dimensional Sparse Econometric Models," Papers 1201.0220, arXiv.org.
    13. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK, 2010. "Nonparametric density estimation for multivariate bounded data," LIDAM Reprints CORE 2301, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    15. Valentyn Panchenko & Artem Prokhorov, 2011. "Efficient estimation of parameters in marginals in semiparametric multivariate models," Working Papers 11001, Concordia University, Department of Economics.
    16. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    17. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    18. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perloff, Jeffrey M. & Schlenker, Wolfram & Sears, Molly & Wu, Ximing, 2020. "Crop Failures from Temperature and Precipitation Shocks: Implications for U.S. Crop Insurance," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304540, Agricultural and Applied Economics Association.
    2. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    3. Wen, Kuangyu & Wu, Ximing, 2017. "Smoothed kernel conditional density estimation," Economics Letters, Elsevier, vol. 152(C), pages 112-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    2. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    3. Juan Lin & Ximing Wu, 2015. "Smooth Tests of Copula Specifications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 128-143, January.
    4. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    6. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    7. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    8. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    9. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    10. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    11. Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017. "A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
    12. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    13. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    14. Jaime Pinilla & Miguel Negrín, 2021. "Non-Parametric Generalized Additive Models as a Tool for Evaluating Policy Interventions," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    15. Westerheide Nina & Kauermann Goeran, 2012. "Flexible Modelling of Duration of Unemployment Using Functional Hazard Models and Penalized Splines: A Case Study Comparing Germany and the UK," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
    16. Thomas Kneib & Nikolaus Umlauf, 2017. "A Primer on Bayesian Distributional Regression," Working Papers 2017-13, Faculty of Economics and Statistics, Universität Innsbruck.
    17. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Seya, Hajime & Yamagata, Yoshiki & Nakamichi, Kumiko, 2016. "Creation of municipality level intensity data of electricity in Japan," Applied Energy, Elsevier, vol. 162(C), pages 1336-1344.
    19. Mirza Nazmul Hasan & Roel Braekers, 2022. "Modelling the association in bivariate survival data by using a Bernstein copula," Computational Statistics, Springer, vol. 37(2), pages 781-815, April.
    20. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.

    More about this item

    Keywords

    Copula; Exponential series estimator; Penalized maximum likelihood; Body mass index; C14; C30; I10;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • I10 - Health, Education, and Welfare - - Health - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:48:y:2015:i:1:p:61-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.