IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v45y2022i1d10.1007_s10203-021-00330-1.html
   My bibliography  Save this article

Calibration to FX triangles of the 4/2 model under the benchmark approach

Author

Listed:
  • Alessandro Gnoatto

    (University of Verona)

  • Martino Grasselli

    (Università degli Studi di Padova
    Léonard de Vinci Pôle Universitaire)

  • Eckhard Platen

    (University of Technology Sydney
    University of Cape Town)

Abstract

We calibrate a novel multifactor stochastic volatility model that includes as special cases the Heston-based model of De Col et al. (J Bank Finance 37(10):3799–3818, 2013) and the 3/2-based model of Baldeaux et al. (J Bank Finance 53:34–48, 2015). Using a dataset on vanilla option quotes in a triangle of currencies, we find that the risk neutral approach typically fails for the calibrated model, in line with the results of Baldeaux et al. (2015).

Suggested Citation

  • Alessandro Gnoatto & Martino Grasselli & Eckhard Platen, 2022. "Calibration to FX triangles of the 4/2 model under the benchmark approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 1-34, June.
  • Handle: RePEc:spr:decfin:v:45:y:2022:i:1:d:10.1007_s10203-021-00330-1
    DOI: 10.1007/s10203-021-00330-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-021-00330-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-021-00330-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Loewenstein & Gregory A. Willard, 2000. "Local martingales, arbitrage, and viability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(1), pages 135-161.
    2. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    3. Steven L. Heston & Mark Loewenstein & Gregory A. Willard, 2007. "Options and Bubbles," Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 359-390.
    4. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    5. Jérôme Detemple & Yerkin Kitapbayev, 2018. "On American VIX options under the generalized 3/2 and 1/2 models," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 550-581, April.
    6. Alessandro Gnoatto, 2017. "Coherent Foreign Exchange Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, February.
    7. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    8. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    9. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    10. Yuyang Cheng & Marcos Escobar-Anel & Zhenxian Gong, 2019. "Generalized Mean-Reverting 4/2 Factor Model," JRFM, MDPI, vol. 12(4), pages 1-21, October.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    13. Hardy Hulley & Johannes Ruf, 2019. "Weak Tail Conditions for Local Martingales," Published Paper Series 2019-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    14. Ke Du & Eckhard Platen, 2016. "Benchmarked Risk Minimization," Mathematical Finance, Wiley Blackwell, vol. 26(3), pages 617-637, July.
    15. Henry Stone, 2020. "Calibrating rough volatility models: a convolutional neural network approach," Quantitative Finance, Taylor & Francis Journals, vol. 20(3), pages 379-392, March.
    16. Henry Stone, 2018. "Calibrating rough volatility models: a convolutional neural network approach," Papers 1812.05315, arXiv.org, revised Jul 2019.
    17. Sascha Desmettre & Gunther Leobacher & L. C. G. Rogers, 2021. "Change of drift in one-dimensional diffusions," Finance and Stochastics, Springer, vol. 25(2), pages 359-381, April.
    18. De Col, Alvise & Gnoatto, Alessandro & Grasselli, Martino, 2013. "Smiles all around: FX joint calibration in a multi-Heston model," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3799-3818.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2021. "CBI-time-changed L\'evy processes for multi-currency modeling," Papers 2112.02440, arXiv.org, revised Jul 2022.
    2. Yumo Zhang, 2023. "Utility maximization in a stochastic affine interest rate and CIR risk premium framework: a BSDE approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 97-128, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Gnoatto & Martino Grasselli & Eckhard Platen, 2016. "A Penny Saved is a Penny Earned: Less Expensive Zero Coupon Bonds," Research Paper Series 374, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    3. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
    4. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018.
    6. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    7. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    8. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    9. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    10. repec:uts:finphd:40 is not listed on IDEAS
    11. Dietmar Leisen & Eckhard Platen, 2017. "Investing for the Long Run," Papers 1705.03929, arXiv.org.
    12. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    13. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2021. "CBI-time-changed Lévy processes for multi-currency modeling," Working Papers 14/2021, University of Verona, Department of Economics.
    14. Giorgia Callegaro & Martino Grasselli & Gilles Paèes, 2021. "Fast Hybrid Schemes for Fractional Riccati Equations (Rough Is Not So Tough)," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 221-254, February.
    15. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    16. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Yuyang Cheng & Marcos Escobar-Anel & Zhenxian Gong, 2019. "Generalized Mean-Reverting 4/2 Factor Model," JRFM, MDPI, vol. 12(4), pages 1-21, October.
    18. Stefano Pagliarani & Andrea Pascucci, 2017. "The exact Taylor formula of the implied volatility," Finance and Stochastics, Springer, vol. 21(3), pages 661-718, July.
    19. Eckhard Platen & Renata Rendek, 2017. "Market Efficiency and Growth Optimal Portfolio," Papers 1706.06832, arXiv.org.
    20. Abir Sridi & Paul Bilokon, 2023. "Applying Deep Learning to Calibrate Stochastic Volatility Models," Papers 2309.07843, arXiv.org, revised Sep 2023.
    21. Alessandro Gnoatto, 2017. "Coherent Foreign Exchange Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, February.

    More about this item

    Keywords

    Benchmark approach; Fourier inversion; Stochastic volatility; Forex;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G1 - Financial Economics - - General Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:45:y:2022:i:1:d:10.1007_s10203-021-00330-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.