Advanced Search
MyIDEAS: Login

Hedging for the Long Run

Contents:

Author Info

Abstract

In the years following the publication of Black and Scholes [7], numerous alternative models have been proposed for pricing and hedging equity derivatives. Prominent examples include stochastic volatility models, jump diffusion models, and models based on Levy processes. These all have their own shortcomings, and evidence suggests that none is up to the task of satisfactorily pricing and hedging extremely long-dated claims. Since they all fall within the ambit of risk-neutral pricing, it is thus natural to speculate that their deficiencies are (at least in part) attributable to the modelling constraints imposed by the risk-neutral approach itself. To investigate this idea, we present a simple two-parameter model for a diversifed equity accumulation index. Although our model does not admit an equivalent risk-neutral probability measure, it nevertheless fulfils a minimal no-arbitrage condition for an economically viable financial market. Furthermore, we demonstrate that contingent claims can be priced and hedged, without the need for an equivalent change of probability measure. Convenient formulae for the prices and hedge ratios of a number of standard European claims are derived, and a series of hedge experiments for extremely long-dated claims on the S&P 500 total return index are conducted. Our model serves also as a convenient medium for illustrating and clarifying several points on asset price bubbles and the economics of arbitrage.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp214.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 214.

as in new window
Length: 24
Date of creation: 01 Feb 2008
Date of revision:
Handle: RePEc:uts:rpaper:214

Contact details of provider:
Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/
More information through EDIRC

Related research

Keywords: long-dated claims; risk-neutral pricing; real-world pricing; arbitrage; minimal market model; squared Bessel processes; hedge simulations; asset price bubbles;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  2. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  3. Shleifer, Andrei & Vishny, Robert W, 1997. " The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
  4. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
  5. Jun Liu, 2004. "Losing Money on Arbitrage: Optimal Dynamic Portfolio Choice in Markets with Arbitrage Opportunities," Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 611-641.
  6. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  7. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  8. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-19, March.
  9. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-52.
  10. Geman, Hélyette & Carr, Peter & Madan, Dilip B. & Yor, Marc, 2003. "Stochastic Volatility for Levy Processes," Economics Papers from University Paris Dauphine 123456789/1392, Paris Dauphine University.
  11. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
  12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  13. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Zhi Jun Guo & Eckhard Platen, 2012. "The Small And Large Time Implied Volatilities In The Minimal Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1250057-1-1.
  2. Eckhard Platen, 2008. "The Law of Minimum Price," Research Paper Series 215, Quantitative Finance Research Centre, University of Technology, Sydney.
  3. Johannes Ruf, 2010. "Hedging under arbitrage," Papers 1003.4797, arXiv.org, revised May 2011.
  4. Baldeaux Jan & Ignatieva Katja & Platen Eckhard, 2014. "A tractable model for indices approximating the growth optimal portfolio," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(1), pages 1-21, February.
  5. Eckhard Platen, 2009. "Real World Pricing of Long Term Contracts," Research Paper Series 262, Quantitative Finance Research Centre, University of Technology, Sydney.
  6. Jan Baldeaux & Eckhard Platen, 2013. "Liability Driven Investments under a Benchmark Based Approach," Research Paper Series 325, Quantitative Finance Research Centre, University of Technology, Sydney.
  7. Daniel Fernholz & Ioannis Karatzas, 2010. "On optimal arbitrage," Papers 1010.4987, arXiv.org.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:214. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.