IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v12y2019i4p159-d274079.html
   My bibliography  Save this article

Generalized Mean-Reverting 4/2 Factor Model

Author

Listed:
  • Yuyang Cheng

    (Department of Statistical and Actuarial Sciences, Western University, London, ON N6A 3K7, Canada
    These authors contributed equally to this work.)

  • Marcos Escobar-Anel

    (Department of Statistical and Actuarial Sciences, Western University, London, ON N6A 3K7, Canada
    These authors contributed equally to this work.)

  • Zhenxian Gong

    (Department of Statistical and Actuarial Sciences, Western University, London, ON N6A 3K7, Canada
    These authors contributed equally to this work.)

Abstract

This paper proposes and investigates a multivariate 4/2 Factor Model. The name 4/2 comes from the superposition of a CIR term and a 3/2-model component. Our model goes multidimensional along the lines of a principal component and factor covariance decomposition. We find conditions for well-defined changes of measure and we also find two key characteristic functions in closed-form, which help with pricing and risk measure calculations. In a numerical example, we demonstrate the significant impact of the newly added 3/2 component (parameter b ) and the common factor ( a ), both with respect to changes on the implied volatility surface (up to 100%) and on two risk measures: value at risk and expected shortfall where an increase of up to 29% was detected.

Suggested Citation

  • Yuyang Cheng & Marcos Escobar-Anel & Zhenxian Gong, 2019. "Generalized Mean-Reverting 4/2 Factor Model," JRFM, MDPI, vol. 12(4), pages 1-21, October.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:159-:d:274079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/12/4/159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/12/4/159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bertrand Tavin & Lorenz Schneider, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect : An analysis of crude oil calendar spread options," Post-Print hal-02311970, HAL.
    2. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    3. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    4. Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
    5. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    6. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    7. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    8. Alessandro Gnoatto & Martino Grasselli & Eckhard Platen, 2016. "A Penny Saved is a Penny Earned: Less Expensive Zero Coupon Bonds," Papers 1608.04683, arXiv.org, revised Mar 2018.
    9. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    10. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Fusai, Gianluca & Marena, Marina & Roncoroni, Andrea, 2008. "Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2033-2045, October.
    13. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    14. C. Gourieroux, 2006. "Continuous Time Wishart Process for Stochastic Risk," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 177-217.
    15. Marcos Escobar‐Anel & Zhenxian Gong, 2020. "The mean‐reverting 4/2 stochastic volatility model: Properties and financial applications," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(5), pages 836-856, September.
    16. Alexey Medvedev & Olivier Scaillet, 2007. "Approximation and Calibration of Short-Term Implied Volatilities Under Jump-Diffusion Stochastic Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 427-459.
    17. De Col, Alvise & Gnoatto, Alessandro & Grasselli, Martino, 2013. "Smiles all around: FX joint calibration in a multi-Heston model," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3799-3818.
    18. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Gnoatto & Martino Grasselli & Eckhard Platen, 2022. "Calibration to FX triangles of the 4/2 model under the benchmark approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 1-34, June.
    2. Lars Stentoft, 2020. "Computational Finance," JRFM, MDPI, vol. 13(7), pages 1-4, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    2. Kang, Boda & Nikitopoulos, Christina Sklibosios & Prokopczuk, Marcel, 2020. "Economic determinants of oil futures volatility: A term structure perspective," Energy Economics, Elsevier, vol. 88(C).
    3. Tianyao Chen & Xue Cheng & Jingping Yang, 2019. "Common Decomposition of Correlated Brownian Motions and its Financial Applications," Papers 1907.03295, arXiv.org, revised Nov 2020.
    4. repec:uts:finphd:41 is not listed on IDEAS
    5. Alessandro Gnoatto & Martino Grasselli, 2011. "The explicit Laplace transform for the Wishart process," Papers 1107.2748, arXiv.org, revised Aug 2013.
    6. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    7. Benjamin Tin Chun Cheng, 2017. "Pricing and Hedging of Long-Dated Commodity Derivatives," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2017.
    8. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    9. Alessandro Gnoatto, 2017. "Coherent Foreign Exchange Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, February.
    10. Branger, Nicole & Herold, Michael & Muck, Matthias, 2021. "International stochastic discount factors and covariance risk," Journal of Banking & Finance, Elsevier, vol. 123(C).
    11. Marcos Escobar & Sebastian Ferrando & Alexey Rubtsov, 2017. "Optimal investment under multi-factor stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 241-260, February.
    12. Bertrand Tavin & Lorenz Schneider, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect : An analysis of crude oil calendar spread options," Post-Print hal-02311970, HAL.
    13. repec:uts:finphd:37 is not listed on IDEAS
    14. Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
    15. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 1-37, May.
    16. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    17. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    18. Gaetano Bua & Daniele Marazzina, 2021. "On the application of Wishart process to the pricing of equity derivatives: the multi-asset case," Computational Management Science, Springer, vol. 18(2), pages 149-176, June.
    19. Prosper Dovonon, 2013. "Conditionally Heteroskedastic Factor Models With Skewness And Leverage Effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1110-1137, November.
    20. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    21. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    22. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:159-:d:274079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.