IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v10y2013i2p105-124.html
   My bibliography  Save this article

Simple measure of similarity for the market graph construction

Author

Listed:
  • Grigory Bautin
  • Valery Kalyagin
  • Alexander Koldanov
  • Petr Koldanov
  • Panos Pardalos

Abstract

A simple measure of similarity for the construction of the market graph is proposed. The measure is based on the probability of the coincidence of the signs of the stock returns. This measure is robust, has a simple interpretation, is easy to calculate and can be used as measure of similarity between any number of random variables. For the case of pairwise similarity the connection of this measure with the sign correlation of Fechner is noted. The properties of the proposed measure of pairwise similarity in comparison with the classic Pearson correlation are studied. The simple measure of pairwise similarity is applied (in parallel with the classic correlation) for the study of Russian and Swedish market graphs. The new measure of similarity for more than two random variables is introduced and applied to the additional deeper analysis of Russian and Swedish markets. Some interesting phenomena for the cliques and independent sets of the obtained market graphs are observed. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Grigory Bautin & Valery Kalyagin & Alexander Koldanov & Petr Koldanov & Panos Pardalos, 2013. "Simple measure of similarity for the market graph construction," Computational Management Science, Springer, vol. 10(2), pages 105-124, June.
  • Handle: RePEc:spr:comgts:v:10:y:2013:i:2:p:105-124
    DOI: 10.1007/s10287-013-0169-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0169-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0169-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong-Hee Kim & Hawoong Jeong, 2005. "Systematic analysis of group identification in stock markets," Papers physics/0503076, arXiv.org, revised Oct 2005.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    4. Garas, Antonios & Argyrakis, Panos, 2007. "Correlation study of the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 399-410.
    5. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    6. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    7. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    8. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    9. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalyagin, V.A. & Koldanov, A.P. & Koldanov, P.A., 2022. "Reliability of maximum spanning tree identification in correlation-based market networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. V. A. Kalyagin & A. P. Koldanov & P. A. Koldanov & P. M. Pardalos, 2018. "Optimal decision for the market graph identification problem in a sign similarity network," Annals of Operations Research, Springer, vol. 266(1), pages 313-327, July.
    3. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    4. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    5. V. A. Kalyagin & P. A. Koldanov & P. M. Pardalos, 2015. "Optimal decision for the market graph identification problem in sign similarity network," Papers 1512.06449, arXiv.org.
    6. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    7. Halkos, George & Tsilika, Kyriaki, 2016. "Measures of correlation and computer algebra," MPRA Paper 70200, University Library of Munich, Germany.
    8. Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2017. "Statistical Procedures for Stock Markets Network Structures Identification," Journal of the New Economic Association, New Economic Association, vol. 35(3), pages 33-52.
    9. Seo Woo Hong & Pierre Miasnikof & Roy Kwon & Yuri Lawryshyn, 2021. "Market Graph Clustering via QUBO and Digital Annealing," JRFM, MDPI, vol. 14(1), pages 1-13, January.
    10. V. A. Kalyagin & A. P. Koldanov & P. A. Koldanov & P. M. Pardalos & V. A. Zamaraev, 2013. "Measures of uncertainty in market network analysis," Papers 1311.2273, arXiv.org.
    11. Nguyen, Q. & Nguyen, N.K. K. & Nguyen, L.H. N., 2019. "Dynamic topology and allometric scaling behavior on the Vietnamese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 235-243.
    12. Kalyagin, V.A. & Koldanov, A.P. & Koldanov, P.A. & Pardalos, P.M. & Zamaraev, V.A., 2014. "Measures of uncertainty in market network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 59-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    4. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    5. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    6. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.
    7. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    8. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    9. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    10. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    11. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    12. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    13. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    14. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    15. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    16. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    17. Vizgunov, A. & Goldengorin, B. & Zamaraev, V. & Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2012. "Applying Market Graphs for Russian Stock Market Analysis," Journal of the New Economic Association, New Economic Association, vol. 15(3), pages 66-81.
    18. Gogas, Periklis & Papadimitriou, Theophilos & Matthaiou, Maria-Artemis, 2016. "Bank supervision using the Threshold-Minimum Dominating Set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 23-35.
    19. Kumar, Sudarshan & Bansal, Avijit & Chakrabarti, Anindya S., 2019. "Ripples on financial networks," IIMA Working Papers WP 2019-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:10:y:2013:i:2:p:105-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.