IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v165y2021i1d10.1007_s10584-021-03040-0.html
   My bibliography  Save this article

Closed-loop and congestion control of the global carbon-climate system

Author

Listed:
  • Carlos A. Sierra

    (Max Planck Institute for Biogeochemistry)

  • Holger Metzler

    (Max Planck Institute for Biogeochemistry)

  • Markus Müller

    (Max Planck Institute for Biogeochemistry)

  • Eurika Kaiser

    (University of Washington)

Abstract

The global carbon-climate system is a complex dynamical system with multiple feedbacks among components, and to steer this system away from dangerous climate change, it may not be enough to prescribe action according to long-term scenarios of fossil fuel emissions. We introduce here concepts from control theory, a branch of applied mathematics that is effective at steering complex dynamical systems to desired states, and distinguish between open- and closed-loop control. We attempt (1) to show that current scientific work on carbon-climate feedbacks and climate policy more closely resembles the conceptual model of open- than closed-loop control, (2) to introduce a mathematical generalization of the carbon-climate system as a compartmental dynamical system that can facilitate the formal treatment of the closed-loop control problem, and (3) to formulate carbon-climate control as a congestion control problem, discussing important concepts such as observability and controllability. We also show that most previous discussions on climate change mitigation and policy development have relied on an implicit assumption of open-loop control that does not consider frequent corrections due to deviations of goals from observations. Using a reduced complexity model, we illustrate that the problem of managing the global carbon cycle can be abstracted as a network congestion problem, accounting for nonlinear behavior and feedback from a global carbon monitoring system. As opposed to scenarios, the goal of closed-loop control is to develop rules for continuously steering the global carbon-climate system away from dangerous climate change.

Suggested Citation

  • Carlos A. Sierra & Holger Metzler & Markus Müller & Eurika Kaiser, 2021. "Closed-loop and congestion control of the global carbon-climate system," Climatic Change, Springer, vol. 165(1), pages 1-24, March.
  • Handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-03040-0
    DOI: 10.1007/s10584-021-03040-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03040-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03040-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levin, Simon & Xepapadeas, Tasos & Crépin, Anne-Sophie & Norberg, Jon & de Zeeuw, Aart & Folke, Carl & Hughes, Terry & Arrow, Kenneth & Barrett, Scott & Daily, Gretchen & Ehrlich, Paul & Kautsky, Nil, 2013. "Social-ecological systems as complex adaptive systems: modeling and policy implications," Environment and Development Economics, Cambridge University Press, vol. 18(2), pages 111-132, April.
    2. Junichi Fujino, Rajesh Nair, Mikiko Kainuma, Toshihiko Masui and Yuzuru Matsuoka, 2006. "Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 343-354.
    3. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    4. Giannis Vardas & Anastasios Xepapadeas, 2010. "Model Uncertainty, Ambiguity and the Precautionary Principle: Implications for Biodiversity Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(3), pages 379-404, March.
    5. Peter E. Thornton & Katherine Calvin & Andrew D. Jones & Alan V. Di Vittorio & Ben Bond-Lamberty & Louise Chini & Xiaoying Shi & Jiafu Mao & William D. Collins & Jae Edmonds & Allison Thomson & John T, 2017. "Biospheric feedback effects in a synchronously coupled model of human and Earth systems," Nature Climate Change, Nature, vol. 7(7), pages 496-500, July.
    6. Peter M. Cox & Chris Huntingford & Mark S. Williamson, 2018. "Emergent constraint on equilibrium climate sensitivity from global temperature variability," Nature, Nature, vol. 553(7688), pages 319-322, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingjuan Ma & Shuifa Ke & Qiang Li & Yaqi Wu, 2023. "Towards Carbon Neutrality: A Comprehensive Analysis on Total Factor Carbon Productivity of the Yellow River Basin, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Emmerling & Vassiliki Manoussi & Anastasios Xepapadeas, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," Working Papers 2016.52, Fondazione Eni Enrico Mattei.
    2. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    3. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    4. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    5. Huntington, Hillard & Liddle, Brantley, 2022. "How energy prices shape OECD economic growth: Panel evidence from multiple decades," Energy Economics, Elsevier, vol. 111(C).
    6. W.A. Brock & A. Xepapadeas & A.N. Yannacopoulos, 2014. "Optimal Control in Space and Time and the Management of Environmental Resources," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 33-68, October.
    7. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sturla F. Kvamsdal & Ivan Belik & Arnt Ove Hopland & Yuanhao Li, 2021. "A Machine Learning Analysis of the Recent Environmental and Resource Economics Literature," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(1), pages 93-115, May.
    9. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    10. Huang, Shi-Wei & Chung, Yung-Fu & Wu, Tai-Hsi, 2021. "Analyzing the relationship between energy security performance and decoupling of economic growth from CO2 emissions for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
    12. Dilger, Alexander, 2020. "Wirtschaftsethische Überlegungen zum Klimawandel," Discussion Papers of the Institute for Organisational Economics 5/2020, University of Münster, Institute for Organisational Economics.
    13. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    14. Robert S. Pindyck, 2021. "What We Know and Don’t Know about Climate Change, and Implications for Policy," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 2(1), pages 4-43.
    15. William Brock & Anastasios Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," DEOS Working Papers 1508, Athens University of Economics and Business.
    16. C. Orsenigo & C. Vercellis, 2018. "Anthropogenic influence on global warming for effective cost-benefit analysis: a machine learning perspective," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 425-442, September.
    17. DeCanio, Stephen J. & Manski, Charles F. & Sanstad, Alan H., 2022. "Minimax-regret climate policy with deep uncertainty in climate modeling and intergenerational discounting," Ecological Economics, Elsevier, vol. 201(C).
    18. Michel Damian & Luigi de Paoli, 2018. "Climate change: Back to development," Post-Print hal-01870974, HAL.
    19. repec:hal:spmain:info:hdl:2441/5vt1fet9fq9o5pkgj2qh2vn1cm is not listed on IDEAS
    20. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    21. Lucas Bretschger & Karen Pittel, 2020. "Twenty Key Challenges in Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 725-750, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-03040-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.