IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v150y2018i3d10.1007_s10584-018-2261-8.html
   My bibliography  Save this article

Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase

Author

Listed:
  • Emiliano Mori

    (University of Siena)

  • Andrea Sforzi

    (Museo di Storia Naturale della Maremma)

  • Giuseppe Bogliani

    (University of Pavia)

  • Pietro Milanesi

    (Swiss Ornithological Institute)

Abstract

Since the 1970s, the crested porcupine Hystrix cristata has shown a marked range expansion in Italy. A web page has been created to collect occurrences of this species to monitor its distribution redefinition. Thus, aims of this work were (i) to identify the main predictors promoting the distribution of this large rodent in Italy and (ii) to predict its potential expansion under future climate change scenarios. A total of 1674 locations were used for this analysis, i.e., all those collected through the web page, with the exception of recently introduced populations (Sardinia, Western Liguria and Province of Varese). The current distribution of the crested porcupine covers a total of 135,177 km2, as estimated through ensemble predictions. Future climate change scenarios for 2050 and 2070 show that a further range expansion by this species would occur up to 225,576 km2, mainly towards areas where the species was historically absent. The increase of isothermality (i.e., the ratio between the mean diurnal and the annual temperature range) and the mean temperature of the driest months would help crested porcupines to reach high altitudes, e.g., in the Alps. In mountain habitats, the ongoing global warming is shifting the distribution of European forests to high elevations, thus potentially providing porcupines with suitable habitats. A reduction in snow cover and the snow period at ground level would remove an important barrier to the range expansion of the crested porcupine in Italy, and thus facilitate digging and food search by this large rodent. Despite being protected at national and international levels, the crested porcupine is reported to be an introduced species to Italy and, therefore, monitoring its range expansion is required. Furthermore, there are complaints about crop damage in agriculture ecosystems, and the species is still widely poached, thus additional management practices are required. Thus, given the conservation interest of this large rodent, an integrated and constantly updated monitoring system that sustains an addressed set of decision-making tools is recommended.

Suggested Citation

  • Emiliano Mori & Andrea Sforzi & Giuseppe Bogliani & Pietro Milanesi, 2018. "Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase," Climatic Change, Springer, vol. 150(3), pages 319-331, October.
  • Handle: RePEc:spr:climat:v:150:y:2018:i:3:d:10.1007_s10584-018-2261-8
    DOI: 10.1007/s10584-018-2261-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2261-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2261-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Redazione, 2015. "Segnalazioni," Economia & lavoro, Carocci editore, issue 1, pages 203-205.
    2. Redazione, 2015. "Segnalazioni," Economia & lavoro, Carocci editore, issue 3, pages 181-182.
    3. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    4. Alessandro Balestrieri & Giuseppe Bogliani & Giovanni Boano & Aritz Ruiz-González & Nicola Saino & Stefano Costa & Pietro Milanesi, 2016. "Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-14, July.
    5. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    6. Geoffrey Klein & Yann Vitasse & Christian Rixen & Christoph Marty & Martine Rebetez, 2016. "Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset," Climatic Change, Springer, vol. 139(3), pages 637-649, December.
    7. Redazione, 2015. "Segnalazioni," Economia & lavoro, Carocci editore, issue 2, pages 239-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Stede, 2016. "Bridging the Industrial Energy Efficiency Gap: Assessing the Evidence from the Italian White Certificate Scheme," Discussion Papers of DIW Berlin 1565, DIW Berlin, German Institute for Economic Research.
    2. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    3. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    4. Karyn Tabor & Jennifer Hewson & Hsin Tien & Mariano González-Roglich & David Hole & John W. Williams, 2018. "Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation," Land, MDPI, vol. 7(3), pages 1-14, July.
    5. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    6. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    7. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    8. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    10. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    11. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    12. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    13. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    14. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    15. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    16. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    17. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    18. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.
    19. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    20. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:150:y:2018:i:3:d:10.1007_s10584-018-2261-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.