IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v140y2017i2d10.1007_s10584-016-1850-7.html
   My bibliography  Save this article

Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous United States

Author

Listed:
  • Kai Duan

    (North Carolina State University)

  • Ge Sun

    (Eastern Forest Environmental Threat Assessment Center, USDA Forest Service)

  • Yang Zhang

    (North Carolina State University)

  • Khairunnisa Yahya

    (North Carolina State University)

  • Kai Wang

    (North Carolina State University)

  • James M. Madden

    (North Carolina State University)

  • Peter V. Caldwell

    (Coweeta Hydrologic Laboratory, USDA Forest Service)

  • Erika C. Cohen

    (Eastern Forest Environmental Threat Assessment Center, USDA Forest Service)

  • Steven G. McNulty

    (Eastern Forest Environmental Threat Assessment Center, USDA Forest Service)

Abstract

Air pollution from greenhouse gases and atmospheric aerosols are the major driving force of climate change that directly alters the terrestrial hydrological cycle and ecosystem functions. However, most current Global Climate Models (GCMs) use prescribed chemical concentrations of limited species; they do not explicitly simulate the time-varying concentrations of trace gases and aerosols and their impacts on climate change. This study investigates the individual and combined impacts of climate change and air pollution on water availability and ecosystem productivity over the conterminous US (CONUS). An ecohydrological model is driven by multiple regional climate scenarios with and without taking into account the impacts of air pollutants on the climate system. The results indicate that regional chemistry-climate feedbacks may largely offset the future warming and wetting trends predicted by GCMs without considering air pollution at the CONUS scale. Consequently, the interactions of air pollution and climate change are expected to significantly reduce water availability by the middle of twenty-first century. On the other hand, the combined impact of climate change and air pollution on ecosystem productivity is less pronounced, but there may still be notable declines in eastern and central regions. The results suggest that air pollution could aggravate regional climate change impacts on water shortage. We conclude that air pollution plays an important role in affecting climate and thus ecohydrological processes. Overlooking the impact of air pollution may cause evident overestimation of future water availability and ecosystem productivity.

Suggested Citation

  • Kai Duan & Ge Sun & Yang Zhang & Khairunnisa Yahya & Kai Wang & James M. Madden & Peter V. Caldwell & Erika C. Cohen & Steven G. McNulty, 2017. "Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous United States," Climatic Change, Springer, vol. 140(2), pages 259-272, January.
  • Handle: RePEc:spr:climat:v:140:y:2017:i:2:d:10.1007_s10584-016-1850-7
    DOI: 10.1007/s10584-016-1850-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1850-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1850-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Kay & A. Rudd & H. Davies & E. Kendon & R. Jones, 2015. "Use of very high resolution climate model data for hydrological modelling: baseline performance and future flood changes," Climatic Change, Springer, vol. 133(2), pages 193-208, November.
    2. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    3. Trevor F. Keenan & David Y. Hollinger & Gil Bohrer & Danilo Dragoni & J. William Munger & Hans Peter Schmid & Andrew D. Richardson, 2013. "Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise," Nature, Nature, vol. 499(7458), pages 324-327, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siwen Ji & Shuhua Ma, 2022. "The effects of industrial pollution on ecosystem service value: a case study in a heavy industrial area, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6804-6833, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Li, Sien & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Tong, Ling & Ding, Risheng & Guo, Weihua & Zhao, Peng & Chen, Xia & Xiao, Huan, 2015. "Ecosystem water use efficiency for a sparse vineyard in arid northwest China," Agricultural Water Management, Elsevier, vol. 148(C), pages 24-33.
    3. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    4. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    5. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    6. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    7. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    8. Feng, Dingrao & Bao, Wenkai & Yang, Yuanyuan & Fu, Meichen, 2021. "How do government policies promote greening? Evidence from China," Land Use Policy, Elsevier, vol. 104(C).
    9. Yu, Haichao & Li, Sien & Ding, Jie & Yang, Tianyi & Wang, Yuexin, 2023. "Water use efficiency and its drivers of two typical cash crops in an arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    10. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Cho, Jaeil & Oki, Taikan & Yeh, Pat J.-F. & Kanae, Shinjiro & Kim, Wonsik, 2010. "The effect of estimated PAR uncertainties on the physiological processes of biosphere models," Ecological Modelling, Elsevier, vol. 221(12), pages 1575-1579.
    12. Brèteau-Amores, Sandrine & Brunette, Marielle & Davi, Hendrik, 2019. "An Economic Comparison of Adaptation Strategies Towards a Drought-induced Risk of Forest Decline," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    13. Boulanger, Pierre & Jomini, Patrick & Zhang, Xiao-guang & Costa, Catherine & Osborne, Michelle, 2010. "The Common Agricultural Policy and the French, European and World Economies," Conference papers 332019, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Govind, Ajit & Cowling, Sharon & Kumari, Jyothi & Rajan, Nithya & Al-Yaari, Amen, 2015. "Distributed modeling of ecohydrological processes at high spatial resolution over a landscape having patches of managed forest stands and crop fields in SW Europe," Ecological Modelling, Elsevier, vol. 297(C), pages 126-140.
    15. Wang, Yu & Zhou, Li & Jia, Qingyu & Yu, Wenying, 2017. "Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China," Agricultural Water Management, Elsevier, vol. 187(C), pages 222-231.
    16. Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    17. Danlu Cai & Klaus Fraedrich & Frank Sielmann & Shoupeng Zhu & Lijun Yu, 2023. "Attribution and Causality Analyses of Regional Climate Variability," Land, MDPI, vol. 12(4), pages 1-18, April.
    18. Sultan Ahmad Rizvi & Afeef Ahmad & Muhammad Latif & Abdul Sattar Shakir & Aftab Ahmad Khan & Waqas Naseem & Muhammad Riaz Gondal, 2021. "Implication of Remote Sensing Data under GIS Environment for Appraisal of Irrigation System Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4909-4926, November.
    19. Pang, Jiaping & Li, Hengpeng & Yu, Fuhe & Geng, Jianwei & Zhang, Wangshou, 2022. "Environmental controls on water use efficiency in a hilly tea plantation in southeast China," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Schwalm, C.R. & Huntzinger, D.N. & Cook, R.B. & Wei, Y. & Baker, I.T. & Neilson, R.P. & Poulter, B. & Caldwell, Peter & Sun, G. & Tian, H.Q. & Zeng, N., 2015. "How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?," Ecological Modelling, Elsevier, vol. 303(C), pages 87-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:140:y:2017:i:2:d:10.1007_s10584-016-1850-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.