IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v138y2016i1d10.1007_s10584-016-1733-y.html
   My bibliography  Save this article

Future aerosol emissions: a multi-model comparison

Author

Listed:
  • Steven J. Smith

    (Joint Global Change Research Institute, PNNL)

  • Shilpa Rao

    (International Institute for Applied Systems Analysis)

  • Keywan Riahi

    (International Institute for Applied Systems Analysis)

  • Detlef P. Vuuren

    (PBL Netherlands Environmental Assessment Agency
    Utrecht University)

  • Katherine V. Calvin

    (Joint Global Change Research Institute, PNNL)

  • Page Kyle

    (Joint Global Change Research Institute, PNNL)

Abstract

This paper compares projections over the twenty-first century of SO2, BC, and OC emissions from three technologically detailed, long-term integrated assessment models. The character of the projections and the response of emissions due to a comprehensive climate policy are discussed focusing on the sectoral level. In a continuation of historical experience, aerosol and precursor emissions are increasingly decoupled from carbon dioxide emissions over the twenty-first century due to a combination of emission controls and technology shifts over time. Implementation of a comprehensive climate policy further reduces emissions, although there is significant variation in this response by sector and by model: the response has many similarities between models for the energy transformation and transportation sectors, with more diversity in the response for the building and industrial sectors. Much of these differences can be traced to specific characteristics of reference case end-use and supply-side technology deployment and emissions control assumptions, which are detailed by sector.

Suggested Citation

  • Steven J. Smith & Shilpa Rao & Keywan Riahi & Detlef P. Vuuren & Katherine V. Calvin & Page Kyle, 2016. "Future aerosol emissions: a multi-model comparison," Climatic Change, Springer, vol. 138(1), pages 13-24, September.
  • Handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1733-y
    DOI: 10.1007/s10584-016-1733-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1733-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1733-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    2. Steven Rose & Richard Richels & Steve Smith & Keywan Riahi & Jessica Strefler & Detlef Vuuren, 2014. "Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios," Climatic Change, Springer, vol. 123(3), pages 511-525, April.
    3. Steven Smith & J. West & Page Kyle, 2011. "Economically consistent long-term scenarios for air pollutant emissions," Climatic Change, Springer, vol. 108(3), pages 619-627, October.
    4. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathijs J. H. M. Harmsen & Pim Dorst & Detlef P. Vuuren & Maarten Berg & Rita Dingenen & Zbigniew Klimont, 2020. "Co-benefits of black carbon mitigation for climate and air quality," Climatic Change, Springer, vol. 163(3), pages 1519-1538, December.
    2. Ou, Yang & Shi, Wenjing & Smith, Steven J. & Ledna, Catherine M. & West, J. Jason & Nolte, Christopher G. & Loughlin, Daniel H., 2018. "Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution," Applied Energy, Elsevier, vol. 216(C), pages 482-493.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    2. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    3. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    4. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    5. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    6. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    7. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    8. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    9. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    10. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    11. Perrihan Al-Riffai & Julian Blohmke & Clemens Breisinger & Manfred Wiebelt, 2015. "Harnessing the Sun and Wind for Economic Development? An Economy-Wide Assessment for Egypt," Sustainability, MDPI, vol. 7(6), pages 1-27, June.
    12. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    13. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    14. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    15. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    16. Jin-Young Kim & Hyun-Goo Kim & Yong-Heack Kang, 2017. "Offshore Wind Speed Forecasting: The Correlation between Satellite-Observed Monthly Sea Surface Temperature and Wind Speed over the Seas around the Korean Peninsula," Energies, MDPI, vol. 10(7), pages 1-15, July.
    17. Frame, Damien & Hannon, Matthew & Bell, Keith & McArthur, Stephen, 2018. "Innovation in regulated electricity distribution networks: A review of the effectiveness of Great Britain's Low Carbon Networks Fund," Energy Policy, Elsevier, vol. 118(C), pages 121-132.
    18. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    19. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    20. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1733-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.