IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i1d10.1007_s10479-022-04906-x.html
   My bibliography  Save this article

A two-stage decision-support approach for improving sustainable last-mile cold chain logistics operations of COVID-19 vaccines

Author

Listed:
  • Eugenia Ama Andoh

    (UiT The Arctic University of Norway)

  • Hao Yu

    (UiT The Arctic University of Norway)

Abstract

The COVID-19 pandemic has become a global health and humanitarian crisis that catastrophically affects many industries. To control the disease spread and restore normal lives, mass vaccination is considered the most effective way. However, the sustainable last-mile cold chain logistics operations of COVID-19 vaccines is a complex short-term planning problem that faces many practical challenges, e.g., low-temperature storage and transportation, supply uncertainty at the early stage, etc. To tackle these challenges, a two-stage decision-support approach is proposed in this paper, which integrates both route optimization and advanced simulation to improve the sustainable performance of last-mile vaccine cold chain logistics operations. Through a real-world case study in Norway during December 2020 and March 2021, the analytical results revealed that the logistics network structure, fleet size, and the composition of heterogeneous vehicles might yield significant impacts on the service level, transportation cost, and CO2 emissions of last-mile vaccine cold chain logistics operations.

Suggested Citation

  • Eugenia Ama Andoh & Hao Yu, 2023. "A two-stage decision-support approach for improving sustainable last-mile cold chain logistics operations of COVID-19 vaccines," Annals of Operations Research, Springer, vol. 328(1), pages 75-105, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04906-x
    DOI: 10.1007/s10479-022-04906-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04906-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04906-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Yogesh K. Dwivedi & Mahmud Akhter Shareef & Bhasker Mukerji & Nripendra P. Rana & Kawaljeet Kaur Kapoor, 2018. "Involvement in emergency supply chain for disaster management: a cognitive dissonance perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 56(21), pages 6758-6773, November.
    3. Alam, Shahriar Tanvir & Ahmed, Sayem & Ali, Syed Mithun & Sarker, Sudipa & Kabir, Golam & ul-Islam, Asif, 2021. "Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals," International Journal of Production Economics, Elsevier, vol. 239(C).
    4. Nafiseh Shamsi Gamchi & S. Ali Torabi & Fariborz Jolai, 2021. "A novel vehicle routing problem for vaccine distribution using SIR epidemic model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 155-188, March.
    5. Yang, Yuwen & Bidkhori, Hoda & Rajgopal, Jayant, 2021. "Optimizing vaccine distribution networks in low and middle-income countries," Omega, Elsevier, vol. 99(C).
    6. Hao Yu & Xu Sun & Wei Deng Solvang & Xu Zhao, 2020. "Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China)," IJERPH, MDPI, vol. 17(5), pages 1-25, March.
    7. Saif, Ahmed & Elhedhli, Samir, 2016. "Cold supply chain design with environmental considerations: A simulation-optimization approach," European Journal of Operational Research, Elsevier, vol. 251(1), pages 274-287.
    8. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    9. Jiang, Peng & Klemeš, Jiří Jaromír & Fan, Yee Van & Fu, Xiuju & Tan, Raymond R. & You, Siming & Foley, Aoife M., 2021. "Energy, environmental, economic and social equity (4E) pressures of COVID-19 vaccination mismanagement: A global perspective," Energy, Elsevier, vol. 235(C).
    10. Jesica Armas & Peter Keenan & Angel A. Juan & Seán McGarraghy, 2019. "Solving large-scale time capacitated arc routing problems: from real-time heuristics to metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 135-162, February.
    11. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    12. Yong, Binbin & Shen, Jun & Liu, Xin & Li, Fucun & Chen, Huaming & Zhou, Qingguo, 2020. "An intelligent blockchain-based system for safe vaccine supply and supervision," International Journal of Information Management, Elsevier, vol. 52(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongli Zhu & Congcong Liu & Guanghua Wu & Yanjun Gao, 2023. "Cold Chain Logistics Network Design for Fresh Agricultural Products with Government Subsidy," Sustainability, MDPI, vol. 15(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Vahdani, Behnam & Mohammadi, Mehrdad & Thevenin, Simon & Gendreau, Michel & Dolgui, Alexandre & Meyer, Patrick, 2023. "Fair-split distribution of multi-dose vaccines with prioritized age groups and dynamic demand: The case study of COVID-19," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1249-1272.
    3. Mohammadi, Mehrdad & Dehghan, Milad & Pirayesh, Amir & Dolgui, Alexandre, 2022. "Bi‐objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID‐19 pandemic," Omega, Elsevier, vol. 113(C).
    4. Yadav, Amit Kumar & Shweta, & Kumar, Dinesh, 2023. "Blockchain technology and vaccine supply chain: Exploration and analysis of the adoption barriers in the Indian context," International Journal of Production Economics, Elsevier, vol. 255(C).
    5. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    6. Hu, Hui & Xu, Jiajun & Liu, Mengqi & Lim, Ming K., 2023. "Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning," Journal of Business Research, Elsevier, vol. 156(C).
    7. Fariba Goodarzian & Ali Navaei & Behdad Ehsani & Peiman Ghasemi & Jesús Muñuzuri, 2023. "Designing an integrated responsive-green-cold vaccine supply chain network using Internet-of-Things: artificial intelligence-based solutions," Annals of Operations Research, Springer, vol. 328(1), pages 531-575, September.
    8. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    9. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    10. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    11. Houda Taoudi Benchekroun & Zoubida Benmamoun & Hanaa Hachimi, 2022. "Implementation and Sustainability Assessment of a Public Procurement Strategy," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    12. Schyns, M., 2015. "An ant colony system for responsive dynamic vehicle routing," European Journal of Operational Research, Elsevier, vol. 245(3), pages 704-718.
    13. Faghih-Roohi, Shahrzad & Akcay, Alp & Zhang, Yingqian & Shekarian, Ehsan & de Jong, Eelco, 2020. "A group risk assessment approach for the selection of pharmaceutical product shipping lanes," International Journal of Production Economics, Elsevier, vol. 229(C).
    14. Neeraj Kumar & Mohit Tyagi & Anish Sachdeva & Yigit Kazancoglu & Mangey Ram, 2022. "Impact analysis of COVID-19 outbreak on cold supply chains of perishable products using a SWARA based MULTIMOORA approach," Operations Management Research, Springer, vol. 15(3), pages 1290-1314, December.
    15. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    16. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    17. Yu Zhang & Zhenzhen Zhang & Andrew Lim & Melvyn Sim, 2021. "Robust Data-Driven Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 69(2), pages 469-485, March.
    18. Dastgoshade, Sohaib & Shafiee, Mohammad & Klibi, Walid & Shishebori, Davood, 2022. "Social equity-based distribution networks design for the COVID-19 vaccine," International Journal of Production Economics, Elsevier, vol. 250(C).
    19. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    20. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04906-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.