IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v318y2022i2d10.1007_s10479-022-04638-y.html
   My bibliography  Save this article

The nucleolus and inheritance of properties in communication situations

Author

Listed:
  • J. Schouten

    (Tilburg University)

  • B. Dietzenbacher

    (Maastricht University)

  • P. Borm

    (Tilburg University)

Abstract

This paper studies the nucleolus of graph-restricted games as an alternative for the Shapley value to evaluate communication situations. We focus on the inheritance of properties of cooperative games related to the nucleolus: strong compromise admissibility and compromise stability. These two properties allow for a direct, closed formula for the nucleolus. We characterize the families of graphs for which the graph-restricted games inherit these properties from the underlying games. Moreover, for each of these two properties, we characterize the family of graphs for which the nucleolus is invariant

Suggested Citation

  • J. Schouten & B. Dietzenbacher & P. Borm, 2022. "The nucleolus and inheritance of properties in communication situations," Annals of Operations Research, Springer, vol. 318(2), pages 1117-1135, November.
  • Handle: RePEc:spr:annopr:v:318:y:2022:i:2:d:10.1007_s10479-022-04638-y
    DOI: 10.1007/s10479-022-04638-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04638-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04638-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van den Brink, René & Pintér, Miklós, 2015. "On axiomatizations of the Shapley value for assignment games," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 110-114.
    2. Marco Slikker, 2000. "Inheritance of properties in communication situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(2), pages 241-268.
    3. van den Nouweland, Anne & Borm, Peter, 1991. "On the Convexity of Communication Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(4), pages 421-430.
    4. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. E. Algaba & J.M. Bilbao & J.J. López, 2001. "A unified approach to restricted games," Theory and Decision, Springer, vol. 50(4), pages 333-345, June.
    6. van den Nouweland, Anne & Borm, Peter & Tijs, Stef, 1992. "Allocation Rules for Hypergraph Communication Situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 255-268.
    7. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    8. Potters, Jos & Reijnierse, Hans, 1995. "Gamma-Component Additive Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 49-56.
    9. Katsev, Ilya & Yanovskaya, Elena, 2013. "The prenucleolus for games with restricted cooperation," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 56-65.
    10. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    11. René Brink & Anna Khmelnitskaya & Gerard Laan, 2016. "An Owen-type value for games with two-level communication structure," Annals of Operations Research, Springer, vol. 243(1), pages 179-198, August.
    12. Marieke Quant & Peter Borm & Hans Reijnierse & Bas van Velzen, 2005. "The core cover in relation to the nucleolus and the Weber set," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(4), pages 491-503, November.
    13. Anna Khmelnitskaya & Peter Sudhölter, 2013. "The prenucleolus and the prekernel for games with communication structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 285-299, October.
    14. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    15. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schouten, Jop, 2022. "Cooperation, allocation and strategy in interactive decision-making," Other publications TiSEM d5d41448-8033-4f6b-8ec0-c, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schouten, Jop, 2022. "Cooperation, allocation and strategy in interactive decision-making," Other publications TiSEM d5d41448-8033-4f6b-8ec0-c, Tilburg University, School of Economics and Management.
    2. Schouten, Jop & Dietzenbacher, Bas & Borm, Peter, 2019. "The Nucleolus and Inheritance of Properties in Communication Situations," Other publications TiSEM bacc7f47-9b6b-4ce4-9f97-4, Tilburg University, School of Economics and Management.
    3. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    4. Elena Iñarra & Roberto Serrano & Ken-Ichi Shimomura, 2020. "The Nucleolus, the Kernel, and the Bargaining Set: An Update," Revue économique, Presses de Sciences-Po, vol. 71(2), pages 225-266.
    5. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    6. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2000. "The position value for union stable systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 221-236, November.
    7. Alexandre Skoda, 2020. "Inheritance of Convexity for the P˜min-Restricted Game," Post-Print halshs-02967120, HAL.
    8. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    9. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    10. Alexandre Skoda, 2020. "Inheritance of Convexity for the P˜min-Restricted Game," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02967120, HAL.
    11. Alexandre Skoda, 2020. "Inheritance of Convexity for the P˜min-Restricted Game," Documents de travail du Centre d'Economie de la Sorbonne 20020, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. Encarnación Algaba & René Brink & Chris Dietz, 2018. "Network Structures with Hierarchy and Communication," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 265-282, October.
    13. Encarnacion Algaba & Jesus Mario Bilbao & Rene van den Brink & Jorge J. Lopez, 2011. "The Myerson Value and Superfluous Supports in Union Stable Systems," Tinbergen Institute Discussion Papers 11-127/1, Tinbergen Institute.
    14. E. Algaba & J. M. Bilbao & R. Brink & J. J. López, 2012. "The Myerson Value and Superfluous Supports in Union Stable Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 650-668, November.
    15. Alexandre Skoda, 2016. "Convexity of Network Restricted Games Induced by Minimum Partitions," Documents de travail du Centre d'Economie de la Sorbonne 16019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Caulier, Jean-François & Mauleon, Ana & Vannetelbosch, Vincent, 2015. "Allocation rules for coalitional network games," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 80-88.
    17. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    18. González–Arangüena, E. & Manuel, C. & Owen, G. & del Pozo, M., 2017. "The within groups and the between groups Myerson values," European Journal of Operational Research, Elsevier, vol. 257(2), pages 586-600.
    19. Grundel, S. & Borm, P.E.M. & Hamers, H.J.M., 2011. "A Compromise Stable Extension of Bankruptcy Games : Multipurpose Resource Allocation," Discussion Paper 2011-029, Tilburg University, Center for Economic Research.
    20. Driessen, Theo S.H. & Fragnelli, Vito & Katsev, Ilya V. & Khmelnitskaya, Anna B., 2011. "On 1-convexity and nucleolus of co-insurance games," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 217-225, March.

    More about this item

    Keywords

    Communication situations; Graph-restricted game; Inheritance of properties; Strong compromise admissibility; Compromise stability; Invariance of the nucleolus;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:318:y:2022:i:2:d:10.1007_s10479-022-04638-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.