IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v295y2020i1d10.1007_s10479-020-03664-y.html
   My bibliography  Save this article

Green food supply chain design considering risk and post-harvest losses: a case study

Author

Listed:
  • D. G. Mogale

    (Cardiff University)

  • Sri Krishna Kumar

    (Indian Institute of Technology Kharagpur)

  • Manoj Kumar Tiwari

    (Indian Institute of Technology Kharagpur
    National Institute of Industrial Engineering (NITIE))

Abstract

The global food insecurity, malnourishment and rising world hunger are the major hindrances in accomplishing the zero hunger sustainable development goal by 2030. Due to the continuous increment of wheat production in the past few decades, India received the second rank in the global wheat production after China. However, storage capacity has not been expanded with similar extent. The administrative bodies in India are constructing several capacitated silos in major geographically widespread producing and consuming states to curtail this gap. This paper presents a multi-period single objective mathematical model to support their decision-making process. The model minimizes the silo establishment, transportation, food grain loss, inventory holding, carbon emission, and risk penalty costs. The proposed model is solved using the variant of the particle swarm optimization combined with global, local and near neighbor social structures along with traditional PSO. The solutions obtained through two metaheuristic algorithms are compared with the optimal solutions. The impact of supply, demand and capacity of silos on the model solution is investigated through sensitivity analysis. Finally, some actionable theoretical and managerial implications are discussed after analysing the obtained results.

Suggested Citation

  • D. G. Mogale & Sri Krishna Kumar & Manoj Kumar Tiwari, 2020. "Green food supply chain design considering risk and post-harvest losses: a case study," Annals of Operations Research, Springer, vol. 295(1), pages 257-284, December.
  • Handle: RePEc:spr:annopr:v:295:y:2020:i:1:d:10.1007_s10479-020-03664-y
    DOI: 10.1007/s10479-020-03664-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03664-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03664-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boonmee, Atiwat & Sethanan, Kanchana, 2016. "A GLNPSO for multi-level capacitated lot-sizing and scheduling problem in the poultry industry," European Journal of Operational Research, Elsevier, vol. 250(2), pages 652-665.
    2. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    3. An, Kun & Ouyang, Yanfeng, 2016. "Robust grain supply chain design considering post-harvest loss and harvest timing equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 110-128.
    4. Zeinal Hamadani, Ali & Abouei Ardakan, Mostafa & Rezvan, Taghi & Honarmandian, Mohammad Mehran, 2013. "Location-allocation problem for intra-transportation system in a big company by using meta-heuristic algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 309-317.
    5. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    6. Yamada, Tadashi & Febri, Zukhruf, 2015. "Freight transport network design using particle swarm optimisation in supply chain–transport supernetwork equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 164-187.
    7. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    8. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    9. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    10. Xu, Jiuping & Yan, Fang & Li, Steven, 2011. "Vehicle routing optimization with soft time windows in a fuzzy random environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1075-1091.
    11. Liotta, Giacomo & Stecca, Giuseppe & Kaihara, Toshiya, 2015. "Optimisation of freight flows and sourcing in sustainable production and transportation networks," International Journal of Production Economics, Elsevier, vol. 164(C), pages 351-365.
    12. Nishikant Mishra & Akshit Singh, 2018. "Use of twitter data for waste minimisation in beef supply chain," Annals of Operations Research, Springer, vol. 270(1), pages 337-359, November.
    13. Validi, Sahar & Bhattacharya, Arijit & Byrne, P.J., 2014. "A case analysis of a sustainable food supply chain distribution system—A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 152(C), pages 71-87.
    14. Ana Esteso & M.M.E. Alemany & Angel Ortiz, 2018. "Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4418-4446, July.
    15. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    16. Vlajic, Jelena V. & van der Vorst, Jack G.A.J. & Haijema, René, 2012. "A framework for designing robust food supply chains," International Journal of Production Economics, Elsevier, vol. 137(1), pages 176-189.
    17. Christine Göbel & Nina Langen & Antonia Blumenthal & Petra Teitscheid & Guido Ritter, 2015. "Cutting Food Waste through Cooperation along the Food Supply Chain," Sustainability, MDPI, vol. 7(2), pages 1-17, January.
    18. Parwez, Sazzad, 2013. "Food Supply Chain Management in Indian Agriculture: Issues, Opportunities and Further Research," MPRA Paper 60441, University Library of Munich, Germany, revised 03 Jul 2014.
    19. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    20. Pisut Pongchairerks & Voratas Kachitvichyanukul, 2009. "Particle Swarm Optimization algorithm with multiple social learning structures," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 6(2), pages 176-194.
    21. Michael Ketzenberg & Jacqueline Bloemhof & Gary Gaukler, 2015. "Managing Perishables with Time and Temperature History," Production and Operations Management, Production and Operations Management Society, vol. 24(1), pages 54-70, January.
    22. Soysal, M. & Bloemhof-Ruwaard, J.M. & van der Vorst, J.G.A.J., 2014. "Modelling food logistics networks with emission considerations: The case of an international beef supply chain," International Journal of Production Economics, Elsevier, vol. 152(C), pages 57-70.
    23. Bilgen, Bilge & Ozkarahan, Irem, 2007. "A mixed-integer linear programming model for bulk grain blending and shipping," International Journal of Production Economics, Elsevier, vol. 107(2), pages 555-571, June.
    24. Zhanguo Zhu & Feng Chu & Alexandre Dolgui & Chengbin Chu & Wei Zhou & Selwyn Piramuthu, 2018. "Recent advances and opportunities in sustainable food supply chain: a model-oriented review," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5700-5722, September.
    25. Etemadnia, Hamideh & Goetz, Stephan J. & Canning, Patrick & Tavallali, Mohammad Sadegh, 2015. "Optimal wholesale facilities location within the fruit and vegetables supply chain with bimodal transportation options: An LP-MIP heuristic approach," European Journal of Operational Research, Elsevier, vol. 244(2), pages 648-661.
    26. Ge, Houtian & Gray, Richard & Nolan, James, 2015. "Agricultural supply chain optimization and complexity: A comparison of analytic vs simulated solutions and policies," International Journal of Production Economics, Elsevier, vol. 159(C), pages 208-220.
    27. Nicholson, Charles F. & Gómez, Miguel I. & Gao, Oliver H., 2011. "The costs of increased localization for a multiple-product food supply chain: Dairy in the United States," Food Policy, Elsevier, vol. 36(2), pages 300-310, April.
    28. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    29. Aleksander Banasik & Argyris Kanellopoulos & G. D. H. Claassen & Jacqueline M. Bloemhof-Ruwaard & Jack G. A. J. Vorst, 2017. "Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization," Annals of Operations Research, Springer, vol. 250(2), pages 341-362, March.
    30. Felix T.S. Chan & Z.X. Wang & A. Goswami & A. Singhania & M.K. Tiwari, 2020. "Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5155-5174, September.
    31. Irem Sengul Orgut & Julie Ivy & Reha Uzsoy, 2017. "Modeling for the equitable and effective distribution of food donations under stochastic receiving capacities," IISE Transactions, Taylor & Francis Journals, vol. 49(6), pages 567-578, June.
    32. Ge, Houtian & Goetz, Stephan & Canning, Patrick & Perez, Agnes, 2018. "Optimal locations of fresh produce aggregation facilities in the United States with scale economies," International Journal of Production Economics, Elsevier, vol. 197(C), pages 143-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tutur Wicaksono & Csaba Bálint Illés, 2022. "From resilience to satisfaction: Defining supply chain solutions for agri-food SMEs through quality approach," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    2. Yash Daultani & Ashish Dwivedi & Saurabh Pratap, 2021. "Benchmarking higher education institutes using data envelopment analysis: capturing perceptions of prospective engineering students," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 773-789, December.
    3. Pei-Ju Wu & Yu-Shan Lin, 2023. "Reducing waste and achieving sustainable food security through optimizing surplus-food collection and meal distribution," Annals of Operations Research, Springer, vol. 328(2), pages 1537-1555, September.
    4. Mohd Fahmi Bin Mad Ali & Mohd Khairol Anuar Bin Mohd Ariffin & Faizal Bin Mustapha & Eris Elianddy Bin Supeni, 2021. "An Unsupervised Machine Learning-Based Framework for Transferring Local Factories into Supply Chain Networks," Mathematics, MDPI, vol. 9(23), pages 1-31, December.
    5. Mohsen Tehrani & Surendra M. Gupta, 2021. "Designing a Sustainable Green Closed-Loop Supply Chain under Uncertainty and Various Capacity Levels," Logistics, MDPI, vol. 5(2), pages 1-31, April.
    6. Jiaxing Wang & Sibin Gao & Zhejun Tang & Dapeng Tan & Bin Cao & Jing Fan, 2023. "A context-aware recommendation system for improving manufacturing process modeling," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1347-1368, March.
    7. Vítor João Pereira Domingues Martinho, 2021. "Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    8. Silvia Carpitella & Ilyas Mzougui & Joaquín Izquierdo, 2022. "Multi-criteria risk classification to enhance complex supply networks performance," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 769-785, September.
    9. Jurgita Kuizinaitė & Mangirdas Morkūnas & Artiom Volkov, 2023. "Assessment of the Most Appropriate Measures for Mitigation of Risks in the Agri-Food Supply Chain," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    10. Guoquan Zhang & Guohao Li & Jing Peng, 2020. "Risk Assessment and Monitoring of Green Logistics for Fresh Produce Based on a Support Vector Machine," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    11. Gaofeng Wang & Shuai Li & Zihao Zhang & Yanning Hou & Changhoon Shin, 2023. "A Visual Knowledge Map Analysis of Cross-Border Agri-Food Supply Chain Research Based on CiteSpace," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    12. Mohd Fahmi Bin Mad Ali & Mohd Khairol Anuar Bin Mohd Ariffin & Aidin Delgoshaei & Faizal Bin Mustapha & Eris Elianddy Bin Supeni, 2023. "A Comprehensive 3-Phase Framework for Determining the Customer’s Product Usage in a Food Supply Chain," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    13. Elżbieta Goryńska-Goldmann & Michał Gazdecki & Krystyna Rejman & Joanna Kobus-Cisowska & Sylwia Łaba & Robert Łaba, 2020. "How to Prevent Bread Losses in the Baking and Confectionery Industry?—Measurement, Causes, Management and Prevention," Agriculture, MDPI, vol. 11(1), pages 1-24, December.
    14. Nilanjan Dutta & Arshinder Kaur, 2023. "Enabling socially responsible operations: A decision-making model for a firm contracting with decision-biased smallholders," Annals of Operations Research, Springer, vol. 320(1), pages 509-533, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mogale, D.G. & Kumar, Mukesh & Kumar, Sri Krishna & Tiwari, Manoj Kumar, 2018. "Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 40-69.
    2. Volha Yakavenka & Ioannis Mallidis & Dimitrios Vlachos & Eleftherios Iakovou & Zafeiriou Eleni, 2020. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products," Annals of Operations Research, Springer, vol. 294(1), pages 593-621, November.
    3. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    4. Chia-Nan Wang & Nhat-Luong Nhieu & Yu-Chi Chung & Huynh-Tram Pham, 2021. "Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window," Mathematics, MDPI, vol. 9(4), pages 1-25, February.
    5. De, Arijit & Gorton, Matthew & Hubbard, Carmen & Aditjandra, Paulus, 2022. "Optimization model for sustainable food supply chains: An application to Norwegian salmon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    6. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    7. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    8. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    9. Luo, Na & Olsen, Tava & Liu, Yanping & Zhang, Abraham, 2022. "Reducing food loss and waste in supply chain operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    10. Martins, C. L. & Melo, Teresa & Pato, Margarida Vaz, 2016. "Redesigning a food bank supply chain network, Part I: Background and mathematical formulation," Technical Reports on Logistics of the Saarland Business School 10, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    11. Na Luo & Tava Lennon Olsen & Yanping Liu, 2021. "A Conceptual Framework to Analyze Food Loss and Waste within Food Supply Chains: An Operations Management Perspective," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    12. Amin Gharehyakheh & Caroline C. Krejci & Jaime Cantu & K. Jamie Rogers, 2020. "A Multi-Objective Model for Sustainable Perishable Food Distribution Considering the Impact of Temperature on Vehicle Emissions and Product Shelf Life," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    13. Mohebalizadehgashti, Fatemeh & Zolfagharinia, Hossein & Amin, Saman Hassanzadeh, 2020. "Designing a green meat supply chain network: A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 312-327.
    14. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    15. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    16. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    17. Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Arvind Bhardwaj & Mohamed Rafik Noor Mohamed Qureshi & Nawaf Khan, 2022. "Leveraging the Dynamics of Food Supply Chains towards Avenues of Sustainability," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    18. Aleksander Banasik & Argyris Kanellopoulos & G. D. H. Claassen & Jacqueline M. Bloemhof-Ruwaard & Jack G. A. J. Vorst, 2017. "Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization," Annals of Operations Research, Springer, vol. 250(2), pages 341-362, March.
    19. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    20. Lejarza, Fernando & Baldea, Michael, 2022. "An efficient optimization framework for tracking multiple quality attributes in supply chains of perishable products," European Journal of Operational Research, Elsevier, vol. 297(3), pages 890-903.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:295:y:2020:i:1:d:10.1007_s10479-020-03664-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.