IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v273y2019i1d10.1007_s10479-018-2912-1.html
   My bibliography  Save this article

Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management

Author

Listed:
  • H. Asefi

    (The University of New South Wales)

  • S. Lim

    (The University of New South Wales)

  • M. Maghrebi

    (The University of New South Wales
    Ferdowsi University of Mashhad)

  • S. Shahparvari

    (RMIT University)

Abstract

Integrated solid waste management (ISWM) comprises activities and processes to collect, transport, treat, recycle and dispose municipal solid wastes. This paper addresses the ISWM location-routing problem in which different types of municipal solid wastes are factored concurrently into an integrated system with all interrelated facilities. To support a cost-effective ISWM system, the number of locations of the system’s components (i.e. transfer stations; recycling, treatment and disposal centres) and truck routing within the system’s components need to be optimized. A mixed-integer linear programming (MILP) model is presented to minimise the total cost of the ISWM system including transportation costs and facility establishment costs. To tackle the non-deterministic polynomial-time hardness of the problem, a stepwise heuristic method is proposed within the frames of two meta-heuristic approaches: (i) variable neighbourhood search (VNS) and (ii) a hybrid VNS and simulated annealing algorithm (VNS + SA). A real-life case study from an existing ISWM system in Tehran, Iran is utilized to apply the proposed model and algorithms. Then the presented MILP model is implemented in CPLEX environment to evaluate the effectiveness of the proposed algorithms for multiple test problems in different scales. The results show that, while both proposed algorithms can effectively solve the problem within practical computing time, the proposed hybrid method efficiently has produced near-optimal solutions with gaps of

Suggested Citation

  • H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
  • Handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-018-2912-1
    DOI: 10.1007/s10479-018-2912-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2912-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2912-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eiselt, H.A., 2007. "Locating landfills--Optimization vs. reality," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1040-1049, June.
    2. Samanlioglu, Funda, 2013. "A multi-objective mathematical model for the industrial hazardous waste location-routing problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 332-340.
    3. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    4. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    5. Omid Boyer & Tang Sai Hong & Ali Pedram & Rosnah Bt Mohd Yusuff & Norzima Zulkifli, 2013. "A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, December.
    6. Hossein Asefi & Samsung Lim & Mojtaba Maghrebi, 2017. "Adaptation of simulated annealing to an integrated municipal solid waste location-routing problem," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 28(2), pages 127-143.
    7. Lin, C.K.Y. & Kwok, R.C.W., 2006. "Multi-objective metaheuristics for a location-routing problem with multiple use of vehicles on real data and simulated data," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1833-1849, December.
    8. Erkut, Erhan & Karagiannidis, Avraam & Perkoulidis, George & Tjandra, Stevanus A., 2008. "A multicriteria facility location model for municipal solid waste management in North Greece," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1402-1421, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ondrej Stopka & Maria Stopkova & Rudolf Kampf, 2019. "Application of the Operational Research Method to Determine the Optimum Transport Collection Cycle of Municipal Waste in a Predesignated Urban Area," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    2. Chun-lin Xin & Shuo Liang & Feng-wu Shen, 0. "Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-21.
    3. Arthur Mahéo & Diego Gabriel Rossit & Philip Kilby, 2023. "Solving the integrated bin allocation and collection routing problem for municipal solid waste: a Benders decomposition approach," Annals of Operations Research, Springer, vol. 322(1), pages 441-465, March.
    4. Ali Ebadi Torkayesh & Hadi Rezaei Vandchali & Erfan Babaee Tirkolaee, 2021. "Multi-Objective Optimization for Healthcare Waste Management Network Design with Sustainability Perspective," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    5. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    6. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    7. Amin Aghalari & Darweesh Ehssan Salamah & Carlos Marino & Mohammad Marufuzzaman, 2023. "Electric vehicles fast charger location-routing problem under ambient temperature," Annals of Operations Research, Springer, vol. 324(1), pages 721-759, May.
    8. Chun-lin Xin & Shuo Liang & Feng-wu Shen, 2022. "Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 953-973, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Yu & Wei Deng Solvang, 2017. "A multi-objective location-allocation optimization for sustainable management of municipal solid waste," Environment Systems and Decisions, Springer, vol. 37(3), pages 289-308, September.
    2. Yan Sun & Maoxiang Lang & Danzhu Wang, 2016. "Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints," IJERPH, MDPI, vol. 13(8), pages 1-31, July.
    3. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    4. Hamed Farrokhi-Asl & Ahmad Makui & Armin Jabbarzadeh & Farnaz Barzinpour, 2020. "Solving a multi-objective sustainable waste collection problem considering a new collection network," Operational Research, Springer, vol. 20(4), pages 1977-2015, December.
    5. Jun Zhao & Lixiang Huang, 2019. "Multi-Period Network Design Problem in Regional Hazardous Waste Management Systems," IJERPH, MDPI, vol. 16(11), pages 1-27, June.
    6. Shahrzad Faghih-Roohi & Yew-Soon Ong & Sobhan Asian & Allan N. Zhang, 2016. "Dynamic conditional value-at-risk model for routing and scheduling of hazardous material transportation networks," Annals of Operations Research, Springer, vol. 247(2), pages 715-734, December.
    7. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    8. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    9. Prasit Kailomsom & Charoenchai Khompatraporn, 2023. "A Multi-Objective Optimization Model for Multi-Facility Decisions of Infectious Waste Transshipment and Disposal," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    10. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    11. Martínez-Salazar, Iris Abril & Molina, Julian & Ángel-Bello, Francisco & Gómez, Trinidad & Caballero, Rafael, 2014. "Solving a bi-objective Transportation Location Routing Problem by metaheuristic algorithms," European Journal of Operational Research, Elsevier, vol. 234(1), pages 25-36.
    12. Pourya Pourhejazy & Oh Kyoung Kwon, 2016. "The New Generation of Operations Research Methods in Supply Chain Optimization: A Review," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    13. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    14. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    15. Hao Yu & Wei Deng Solvang, 2016. "An Improved Multi-Objective Programming with Augmented ε -Constraint Method for Hazardous Waste Location-Routing Problems," IJERPH, MDPI, vol. 13(6), pages 1-21, May.
    16. Wang, Juyoung & Cevik, Mucahit & Amin, Saman Hassanzadeh & Parsaee, Amir Ali, 2021. "Mixed-integer linear programming models for the paint waste management problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    18. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    19. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    20. Gambella, Claudio & Maggioni, Francesca & Vigo, Daniele, 2019. "A stochastic programming model for a tactical solid waste management problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 684-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-018-2912-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.