IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8279-d600596.html
   My bibliography  Save this article

Multi-Objective Optimization for Healthcare Waste Management Network Design with Sustainability Perspective

Author

Listed:
  • Ali Ebadi Torkayesh

    (Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey)

  • Hadi Rezaei Vandchali

    (Department of Maritime and Logistics Management, Australian Maritime College, University of Tasmania, Launceston, TAS 7248, Australia)

  • Erfan Babaee Tirkolaee

    (Department of Industrial Engineering, Istinye University, Istanbul 34010, Turkey)

Abstract

Healthcare Waste Management (HWM) is considered as one of the important urban decision-making problems due to its potential environmental, economic, and social risks and damages. The network of the HWM system involves important decisions such as facility locating, inventory management, and transportation management. Moreover, with growing concerns towards sustainable development objectives, HWM systems should address its environmental and social aspects as well as its economic and technical characteristics. In this regard, this paper formulates a novel multi-objective optimization model to empower companies in making optimized decisions considering the economic, environmental, and social aspects. Within the proposed model, the first objective function aims to minimize the transportation costs, processing costs, and establishment costs. The second objective function aims to minimize environmental risks and emissions related to the transportation of waste between facilities. The third objective function aims to maximize job creation opportunities. Formulating these three functions, an Improved Multi-Choice Goal Programing (IMCGP) approach is proposed to solve the multi-objective optimization model, which is then compared with the Goal Attainment Method (GAM). Finally, to show the applicability and feasibility of the proposed model, an illustrative example of healthcare waste management is analyzed, and the results are discussed.

Suggested Citation

  • Ali Ebadi Torkayesh & Hadi Rezaei Vandchali & Erfan Babaee Tirkolaee, 2021. "Multi-Objective Optimization for Healthcare Waste Management Network Design with Sustainability Perspective," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8279-:d:600596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minas Minoglou & Spyridoula Gerassimidou & Dimitrios Komilis, 2017. "Healthcare Waste Generation Worldwide and Its Dependence on Socio-Economic and Environmental Factors," Sustainability, MDPI, vol. 9(2), pages 1-13, February.
    2. Hadi Rezaei Vandchali & Stephen Cahoon & Shu-Ling Chen, 2021. "The impact of power on the depth of sustainability collaboration in the supply chain network for Australian food retailers," International Journal of Procurement Management, Inderscience Enterprises Ltd, vol. 14(2), pages 165-184.
    3. Inghels, Dirk & Dullaert, Wout & Vigo, Daniele, 2016. "A service network design model for multimodal municipal solid waste transport," European Journal of Operational Research, Elsevier, vol. 254(1), pages 68-79.
    4. H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
    5. Huang, Shan-Huen & Lin, Pei-Chun, 2015. "Vehicle routing–scheduling for municipal waste collection system under the “Keep Trash off the Ground” policy," Omega, Elsevier, vol. 55(C), pages 24-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salehi-Amiri, Amirhossein & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa & Gajpal, Yuvraj & Jabbarzadeh, Armin, 2022. "Designing an effective two-stage, sustainable, and IoT based waste management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Erfan Babaee Tirkolaee & Alireza Goli & Hêriş Golpîra & Ernesto D. R. Santibañez Gonzalez, 2023. "Sustainable Global Supply Chain Management from an International Perspective," Sustainability, MDPI, vol. 15(16), pages 1-2, August.
    3. Georgios Giakoumakis & Dorothea Politi & Dimitrios Sidiras, 2021. "Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review," Energies, MDPI, vol. 14(23), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gambella, Claudio & Maggioni, Francesca & Vigo, Daniele, 2019. "A stochastic programming model for a tactical solid waste management problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 684-694.
    2. Ondrej Stopka & Maria Stopkova & Rudolf Kampf, 2019. "Application of the Operational Research Method to Determine the Optimum Transport Collection Cycle of Municipal Waste in a Predesignated Urban Area," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    3. Thobile Zikhathile & Harrison Atagana & Joseph Bwapwa & David Sawtell, 2022. "A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    4. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    5. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    6. Hina, Syeda Mahlaqa & Szmerekovsky, Joseph & Lee, EunSu & Amin, Muhammad & Arooj, Syeda, 2020. "Effective municipal solid waste collection using geospatial information systems for transportation: A case study of two metropolitan cities in Pakistan," Research in Transportation Economics, Elsevier, vol. 84(C).
    7. Chun-lin Xin & Shuo Liang & Feng-wu Shen, 2022. "Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 953-973, July.
    8. Khalil al-Sulbi & Pawan Kumar Chaurasia & Abdulaziz Attaallah & Alka Agrawal & Dhirendra Pandey & Vandna Rani Verma & Vipin Kumar & Md Tarique Jamal Ansari, 2023. "A Fuzzy TOPSIS-Based Approach for Comprehensive Evaluation of Bio-Medical Waste Management: Advancing Sustainability and Decision-Making," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    9. Erfan Babaee Tirkolaee & Alireza Goli & Selma Gütmen & Gerhard-Wilhelm Weber & Katarzyna Szwedzka, 2023. "A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms," Annals of Operations Research, Springer, vol. 324(1), pages 189-214, May.
    10. Amin Aghalari & Darweesh Ehssan Salamah & Carlos Marino & Mohammad Marufuzzaman, 2023. "Electric vehicles fast charger location-routing problem under ambient temperature," Annals of Operations Research, Springer, vol. 324(1), pages 721-759, May.
    11. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    12. Jayakrishna Kandasamy & Yatin P. Kinare & Miheer T. Pawar & Abhijit Majumdar & Vimal K.E.K. & Rohit Agrawal, 2022. "Circular economy adoption challenges in medical waste management for sustainable development: An empirical study," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 958-975, October.
    13. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    14. Xiaoyu Yang & Xiaopeng Guo & Kun Yang, 2021. "Redesigning the Municipal Solid Waste Supply Chain Considering the Classified Collection and Disposal: A Case Study of Incinerable Waste in Beijing," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    15. María Carmen Carnero, 2020. "Waste Segregation FMEA Model Integrating Intuitionistic Fuzzy Set and the PAPRIKA Method," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    16. Arthur Mahéo & Diego Gabriel Rossit & Philip Kilby, 2023. "Solving the integrated bin allocation and collection routing problem for municipal solid waste: a Benders decomposition approach," Annals of Operations Research, Springer, vol. 322(1), pages 441-465, March.
    17. Georgios Giakoumakis & Dorothea Politi & Dimitrios Sidiras, 2021. "Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review," Energies, MDPI, vol. 14(23), pages 1-30, December.
    18. Haoqing Wang & Wen Yi & Yannick Liu, 2022. "Optimal Route Design for Construction Waste Transportation Systems: Mathematical Models and Solution Algorithms," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    19. Muhammad Hammad Mushtaq & Fahad Noor & M. A. Mujtaba & Salman Asghar & Abdulfatah Abdu Yusuf & Manzoore Elahi M. Soudagar & Abrar Hussain & Mohamed Fathy Badran & Kiran Shahapurkar, 2022. "Environmental Performance of Alternative Hospital Waste Management Strategies Using Life Cycle Assessment (LCA) Approach," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    20. Yang, Tiannuo & Chu, Zhongzhu & Wang, Bailin, 2023. "Feasibility on the integration of passenger and freight transportation in rural areas: A service mode and an optimization model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8279-:d:600596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.