IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v217y2014i1p535-56310.1007-s10479-014-1565-y.html
   My bibliography  Save this article

Quantile–DEA classifiers with interval data

Author

Listed:
  • Quanling Wei
  • Tsung-Sheng Chang
  • Song Han

Abstract

This research intends to develop the classifiers for dealing with binary classification problems with interval data whose difficulty to be tackled has been well recognized, regardless of the field. The proposed classifiers involve using the ideas and techniques of both quantiles and data envelopment analysis (DEA), and are thus referred to as quantile–DEA classifiers. That is, the classifiers first use the concept of quantiles to generate a desired number of exact-data sets from a training-data set comprising interval data. Then, the classifiers adopt the concept and technique of an intersection-form production possibility set in the DEA framework to construct acceptance domains with each corresponding to an exact-data set and thus a quantile. Here, an intersection-form acceptance domain is actually represented by a linear inequality system, which enables the quantile–DEA classifiers to efficiently discover the groups to which large volumes of data belong. In addition, the quantile feature enables the proposed classifiers not only to help reveal patterns, but also to tell the user the value or significance of these patterns. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Quanling Wei & Tsung-Sheng Chang & Song Han, 2014. "Quantile–DEA classifiers with interval data," Annals of Operations Research, Springer, vol. 217(1), pages 535-563, June.
  • Handle: RePEc:spr:annopr:v:217:y:2014:i:1:p:535-563:10.1007/s10479-014-1565-y
    DOI: 10.1007/s10479-014-1565-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-014-1565-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-014-1565-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Joe, 2003. "Imprecise data envelopment analysis (IDEA): A review and improvement with an application," European Journal of Operational Research, Elsevier, vol. 144(3), pages 513-529, February.
    2. Wei, Quanling & Yu, Gang, 1997. "Analyzing properties of K-cones in the generalized data envelopment analysis model," Journal of Econometrics, Elsevier, vol. 80(1), pages 63-84, September.
    3. Corne, David & Dhaenens, Clarisse & Jourdan, Laetitia, 2012. "Synergies between operations research and data mining: The emerging use of multi-objective approaches," European Journal of Operational Research, Elsevier, vol. 221(3), pages 469-479.
    4. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    5. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.
    6. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Pendharkar, Parag C. & Troutt, Marvin D., 2011. "DEA based dimensionality reduction for classification problems satisfying strict non-satiety assumption," European Journal of Operational Research, Elsevier, vol. 212(1), pages 155-163, July.
    9. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meimei Xia & Jian Chen & Juliang Zhang, 2015. "Multi-criteria decision making based on relative measures," Annals of Operations Research, Springer, vol. 229(1), pages 791-811, June.
    2. Ai-bing Ji & Ye Ji & Yanhua Qiao, 2018. "DEA-Based Piecewise Linear Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 809-820, April.
    3. Ai-bing Ji & Yanhua Qiao & Chang Liu, 2019. "Fuzzy DEA-based classifier and its applications in healthcare management," Health Care Management Science, Springer, vol. 22(3), pages 560-568, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azadi, Majid & Farzipoor Saen, Reza, 2013. "A combination of QFD and imprecise DEA with enhanced Russell graph measure: A case study in healthcare," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 281-291.
    2. Bohlool Ebrahimi & Madjid Tavana & Andreas Kleine & Andreas Dellnitz, 2021. "An epsilon-based data envelopment analysis approach for solving performance measurement problems with interval and ordinal dual-role factors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1103-1124, December.
    3. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    4. Park, K. Sam, 2010. "Duality, efficiency computations and interpretations in imprecise DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 289-296, January.
    5. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    6. HATAMI-MARBINI, Adel & AGRELL, Per & AGHAYI, Nazila, 2013. "Imprecise data envelopment analysis for the two-stage process," LIDAM Discussion Papers CORE 2013004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Anna Labijak-Kowalska & Miłosz Kadziński, 2023. "Exact and stochastic methods for robustness analysis in the context of Imprecise Data Envelopment Analysis," Operational Research, Springer, vol. 23(1), pages 1-34, March.
    8. Shabani, Amir & Visani, Franco & Barbieri, Paolo & Dullaert, Wout & Vigo, Daniele, 2019. "Reliable estimation of suppliers’ total cost of ownership: An imprecise data envelopment analysis model with common weights," Omega, Elsevier, vol. 87(C), pages 57-70.
    9. Mostafaee, A. & Saljooghi, F.H., 2010. "Cost efficiency measures in data envelopment analysis with data uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 595-603, April.
    10. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.
    11. Bohlool Ebrahimi & Madjid Tavana & Vincent Charles, 2021. "A note and new extensions on “interval efficiency measures in data envelopment analysis with imprecise data”," Operational Research, Springer, vol. 21(4), pages 2719-2737, December.
    12. Shaher Z. Zahran & Jobair Bin Alam & Abdulrahem H. Al-Zahrani & Yiannis Smirlis & Stratos Papadimitriou & Vangelis Tsioumas, 2020. "Analysis of port efficiency using imprecise and incomplete data," Operational Research, Springer, vol. 20(1), pages 219-246, March.
    13. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2018. "Dual-role factors for imprecise data envelopment analysis," Omega, Elsevier, vol. 77(C), pages 15-31.
    14. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    15. R Farzipoor Saen, 2009. "Supplier selection by the pair of nondiscretionary factors-imprecise data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1575-1582, November.
    16. Najmeh Malekmohammadi & Farhad Lotfi & Azmi Jaafar, 2011. "Data envelopment scenario analysis with imprecise data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(1), pages 65-79, March.
    17. Kao, Chiang & Lin, Pei-Huang, 2011. "Qualitative factors in data envelopment analysis: A fuzzy number approach," European Journal of Operational Research, Elsevier, vol. 211(3), pages 586-593, June.
    18. Jolly Puri & Shiv Prasad Yadav, 2017. "Improved DEA models in the presence of undesirable outputs and imprecise data: an application to banking industry in India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1608-1629, November.
    19. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    20. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:217:y:2014:i:1:p:535-563:10.1007/s10479-014-1565-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.