IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v11y2017i2d10.1007_s11634-016-0247-9.html
   My bibliography  Save this article

Mixture models for ordinal responses to account for uncertainty of choice

Author

Listed:
  • Gerhard Tutz

    (Ludwig-Maximilians-Universität München)

  • Micha Schneider

    (Ludwig-Maximilians-Universität München)

  • Maria Iannario

    (University of Naples Federico II)

  • Domenico Piccolo

    (University of Naples Federico II)

Abstract

In CUB models the uncertainty of choice is explicitly modelled as a Combination of discrete Uniform and shifted Binomial random variables. The basic concept to model the response as a mixture of a deliberate choice of a response category and an uncertainty component that is represented by a uniform distribution on the response categories is extended to a much wider class of models. The deliberate choice can in particular be determined by classical ordinal response models as the cumulative and adjacent categories model. Then one obtains the traditional and flexible models as special cases when the uncertainty component is irrelevant. It is shown that the effect of explanatory variables is underestimated if the uncertainty component is neglected in a cumulative type mixture model. Visualization tools for the effects of variables are proposed and the modelling strategies are evaluated by use of real data sets. It is demonstrated that the extended class of models frequently yields better fit than classical ordinal response models without an uncertainty component.

Suggested Citation

  • Gerhard Tutz & Micha Schneider & Maria Iannario & Domenico Piccolo, 2017. "Mixture models for ordinal responses to account for uncertainty of choice," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 281-305, June.
  • Handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-016-0247-9
    DOI: 10.1007/s11634-016-0247-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-016-0247-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-016-0247-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murray Aitkin, 1999. "A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models," Biometrics, The International Biometric Society, vol. 55(1), pages 117-128, March.
    2. Maria Iannario, 2010. "On the identifiability of a mixture model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 87-94.
    3. Romina Gambacorta & Maria Iannario, 2013. "Measuring Job Satisfaction with CUB Models," LABOUR, CEIS, vol. 27(2), pages 198-224, June.
    4. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    5. D'Elia, Angela & Piccolo, Domenico, 2005. "A mixture model for preferences data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 917-934, June.
    6. Bettina Grün & Friedrich Leisch, 2008. "Identifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 225-247, November.
    7. Caffo, Brian & An, Ming-Wen & Rohde, Charles, 2007. "Flexible random intercept models for binary outcomes using mixtures of normals," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5220-5235, July.
    8. Jan Gertheiss & Gerhard Tutz, 2009. "Penalized Regression with Ordinal Predictors," International Statistical Review, International Statistical Institute, vol. 77(3), pages 345-365, December.
    9. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    10. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    11. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    12. Leonardo Grilli & Maria Iannario & Domenico Piccolo & Carla Rampichini, 2014. "Latent class CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 105-119, March.
    13. Everitt, B. S., 1988. "A finite mixture model for the clustering of mixed-mode data," Statistics & Probability Letters, Elsevier, vol. 6(5), pages 305-309, April.
    14. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    15. Dankmar Böhning & Ekkehart Dietz & Rainer Schaub & Peter Schlattmann & Bruce Lindsay, 1994. "The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 373-388, June.
    16. Bercedis Peterson & Frank E. Harrell, 1990. "Partial Proportional Odds Models for Ordinal Response Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(2), pages 205-217, June.
    17. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Nardo & R. Simone, 2019. "A model-based fuzzy analysis of questionnaires," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 187-215, June.
    2. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    3. Maria Iannario & Anna Clara Monti, 2022. "Modelling consumer perceptions of service quality for urban public transport systems using statistical models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 61-76, April.
    4. Rosaria Simone & Gerhard Tutz, 2018. "Modelling uncertainty and response styles in ordinal data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 224-245, August.
    5. Simone, Rosaria & Tutz, Gerhard & Iannario, Maria, 2020. "Subjective heterogeneity in response attitude for multivariate ordinal outcomes," Econometrics and Statistics, Elsevier, vol. 14(C), pages 145-158.
    6. Roberto Colombi & Sabrina Giordano, 2019. "Likelihood-based tests for a class of misspecified finite mixture models for ordinal categorical data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1175-1202, December.
    7. Alan Agresti & Maria Kateri, 2019. "The class of CUB models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 445-449, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Maria Iannario & Domenico Piccolo, 2016. "A comprehensive framework of regression models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 233-252, August.
    3. Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
    4. Maria Iannario, 2012. "Preliminary estimators for a mixture model of ordinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 163-184, October.
    5. Stefania Capecchi & Maria Iannario & Rosaria Simone, 2018. "Well-Being and Relational Goods: A Model-Based Approach to Detect Significant Relationships," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 729-750, January.
    6. Leonardo Grilli & Maria Iannario & Domenico Piccolo & Carla Rampichini, 2014. "Latent class CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 105-119, March.
    7. Gennaro Punzo & Rosalia Castellano & Mirko Buonocore, 2018. "Job Satisfaction in the “Big Four” of Europe: Reasoning Between Feeling and Uncertainty Through CUB Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(1), pages 205-236, August.
    8. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    9. Domenico Piccolo & Rosaria Simone, 2019. "Rejoinder to the discussion of “The class of cub models: statistical foundations, inferential issues and empirical evidence”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 477-493, September.
    10. Maurizio Carpita & Enrico Ciavolino & Mariangela Nitti, 2019. "The MIMIC–CUB Model for the Prediction of the Economic Public Opinions in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 287-305, November.
    11. Maria Iannario & Anna Clara Monti & Domenico Piccolo, 2016. "Robustness issues for cub models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 731-750, December.
    12. Rosaria Simone, 2021. "An accelerated EM algorithm for mixture models with uncertainty for rating data," Computational Statistics, Springer, vol. 36(1), pages 691-714, March.
    13. David Hensher & Andrew Collins & William Greene, 2013. "Accounting for attribute non-attendance and common-metric aggregation in a probabilistic decision process mixed multinomial logit model: a warning on potential confounding," Transportation, Springer, vol. 40(5), pages 1003-1020, September.
    14. Bambio, Yiriyibin & Bouayad Agha, Salima, 2018. "Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso?," World Development, Elsevier, vol. 111(C), pages 130-147.
    15. William H. Greene & David A. Hensher, 2013. "Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model," Applied Economics, Taylor & Francis Journals, vol. 45(14), pages 1897-1902, May.
    16. repec:jss:jstsof:28:i04 is not listed on IDEAS
    17. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    18. Simone, Rosaria & Tutz, Gerhard & Iannario, Maria, 2020. "Subjective heterogeneity in response attitude for multivariate ordinal outcomes," Econometrics and Statistics, Elsevier, vol. 14(C), pages 145-158.
    19. Gore, Madison & Joshi, Omkar & Chapagain, Binod & Poudyal, Neelam C. & Fairbanks, Sue, 2023. "Visitor satisfaction with WMAs: A case study from Oklahoma," Forest Policy and Economics, Elsevier, vol. 147(C).
    20. Stefano Caiazza & Alberto Franco Pozzolo & Giovanni Trovato, 2016. "Bank efficiency measures, M&A decision and heterogeneity," Journal of Productivity Analysis, Springer, vol. 46(1), pages 25-41, August.
    21. Maria Iannario, 2012. "Modelling shelter choices in a class of mixture models for ordinal responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-016-0247-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.