IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v43y2023i5p576-586.html
   My bibliography  Save this article

Deceased Donor Kidney Transplantation for Older Transplant Candidates: A New Microsimulation Model for Determining Risks and Benefits

Author

Listed:
  • Matthew B. Kaufmann

    (Stanford Health Policy, Department of Health Policy, School of Medicine and Center for Health Policy, Freeman Spogli Institute, Stanford University, Stanford, CA, USA)

  • Jane C. Tan

    (Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA)

  • Glenn M. Chertow

    (Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA)

  • Jeremy D. Goldhaber-Fiebert

    (Stanford Health Policy, Department of Health Policy, School of Medicine and Center for Health Policy, Freeman Spogli Institute, Stanford University, Stanford, CA, USA)

Abstract

Background Under the current US kidney allocation system, older candidates receive a disproportionately small share of deceased donor kidneys despite a reserve of potentially usable kidneys that could shorten their wait times. To consider potential health gains from increasing access to kidneys for these candidates, we developed and calibrated a microsimulation model of the transplantation process and long-term outcomes for older deceased donor kidney transplant candidates. Methods We estimated risk equations for transplant outcomes using the Scientific Registry of Transplant Recipients (SRTR), which contains data on all US transplants (2010–2019). A microsimulation model combined these equations to account for competing events. We calibrated the model to key transplant outcomes and used acceptance sampling, retaining the best-fitting 100 parameter sets. We then examined life expectancy gains from allocating kidneys even of lower quality across patient subgroups defined by age and designated race/ethnicity. Results The best-fitting 100 parameter sets (among 4,000,000 sampled) enabled our model to closely match key transplant outcomes. The model demonstrated clear survival benefits for those who receive a deceased donor kidney, even a lower quality one, compared with remaining on the waitlist where there is a risk of removal. The expected gain in survival from receiving a lower quality donor kidney was consistent gains across age and race/ethnic subgroups. Limitations Limited available data on socioeconomic factors. Conclusions Our microsimulation model accurately replicates a range of key kidney transplant outcomes among older candidates and demonstrates that older candidates may derive substantial benefits from transplantation with lower quality kidneys. This model can be used to evaluate policies that have been proposed to address concerns that the current system disincentivizes deceased donor transplants for older patients. Highlights The microsimulation model was consistent with the data after calibration and accurately simulated the transplantation process for older deceased donor kidney transplant candidates. There are clear survival benefits for older transplant candidates who receive deceased donor kidneys, even lower quality ones, compared with remaining on the waitlist. This model can be used to evaluate policies aimed at increasing transplantation among older candidates.

Suggested Citation

  • Matthew B. Kaufmann & Jane C. Tan & Glenn M. Chertow & Jeremy D. Goldhaber-Fiebert, 2023. "Deceased Donor Kidney Transplantation for Older Transplant Candidates: A New Microsimulation Model for Determining Risks and Benefits," Medical Decision Making, , vol. 43(5), pages 576-586, July.
  • Handle: RePEc:sae:medema:v:43:y:2023:i:5:p:576-586
    DOI: 10.1177/0272989X231172169
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X231172169
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X231172169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marie Laure Delignette-Muller & Christophe Dutang, 2015. "fitdistrplus : An R Package for Fitting Distributions," Post-Print hal-01616147, HAL.
    2. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    2. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    3. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    4. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    6. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    7. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    8. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    9. Adam R. Martin & Rachel O. Mariani & Kimberley A. Cathline & Michael Duncan & Nicholas J. Paroshy & Gavin Robertson, 2022. "Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    10. Héctor Nájera & David Gordon, 2023. "A Monte Carlo Study of Some Empirical Methods to Find the Optimal Poverty Line in Multidimensional Poverty Measurement," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 391-419, June.
    11. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    12. Valentas Gruzauskas & Aurelija Burinskiene & Andrius Krisciunas, 2023. "Application of Information-Sharing for Resilient and Sustainable Food Delivery in Last-Mile Logistics," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    13. Amanda M. Wilson & Kelly A. Reynolds & Marc P. Verhougstraete & Robert A. Canales, 2019. "Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1812-1824, August.
    14. Wang, Xialin & Nuppenau, Ernst-August, 2021. "Modelling payments for ecosystem services for solving future water conflicts at spatial scales: The Okavango River Basin example," Ecological Economics, Elsevier, vol. 184(C).
    15. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    16. Kun Mo Lee & Min Hyeok Lee & Jong Seok Lee & Joo Young Lee, 2020. "Uncertainty Analysis of Greenhouse Gas (GHG) Emissions Simulated by the Parametric Monte Carlo Simulation and Nonparametric Bootstrap Method," Energies, MDPI, vol. 13(18), pages 1-15, September.
    17. Alexander Webb & Pramesh Kumar & Alireza Khani, 2020. "Estimation of passenger waiting time using automatically collected transit data," Public Transport, Springer, vol. 12(2), pages 299-311, June.
    18. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    19. Bejarano, Adriana C. & Wells, Randall S. & Costa, Daniel P., 2017. "Development of a bioenergetic model for estimating energy requirements and prey biomass consumption of the bottlenose dolphin Tursiops truncatus," Ecological Modelling, Elsevier, vol. 356(C), pages 162-172.
    20. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:43:y:2023:i:5:p:576-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.