IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i6p1550147718783684.html
   My bibliography  Save this article

Safety monitoring and evacuation guide system for pipeline testing laboratory by indoor positioning technique and distributed sensor network

Author

Listed:
  • Lianhong Ding
  • Yu Xiao
  • Xiaotong Deng
  • Feng Li

Abstract

To ensure the human’s safety in the large pipeline testing laboratory, a dynamic evacuation guide system is designed. Based on the analysis of various indoor position methods, inertial navigation system–aided ultra-wideband system is realized for human positioning. Gas sensors are deployed to monitor the leaking of harmful gases, such as H 2 S and CO. The gas diffusion area is also estimated dynamically based on the data of sensors. The evacuation route can be updated according to the real-time situation. Based on the positioning and warning method, a system is developed to dynamically plan safe evacuation route for human in different positions. The method and system can improve the safety of chemical laboratory and other environments with potential dangerous.

Suggested Citation

  • Lianhong Ding & Yu Xiao & Xiaotong Deng & Feng Li, 2018. "Safety monitoring and evacuation guide system for pipeline testing laboratory by indoor positioning technique and distributed sensor network," International Journal of Distributed Sensor Networks, , vol. 14(6), pages 15501477187, June.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:6:p:1550147718783684
    DOI: 10.1177/1550147718783684
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718783684
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718783684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam Pel & Michiel Bliemer & Serge Hoogendoorn, 2012. "A review on travel behaviour modelling in dynamic traffic simulation models for evacuations," Transportation, Springer, vol. 39(1), pages 97-123, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    2. Hemant Gehlot & Arif M. Sadri & Satish V. Ukkusuri, 2019. "Joint modeling of evacuation departure and travel times in hurricanes," Transportation, Springer, vol. 46(6), pages 2419-2440, December.
    3. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    4. Ma. Bernadeth B. Lim & Hector R. Lim & Mongkut Piantanakulchai & Francis Aldrine Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    5. Zhi-Chun Li & Qian Liu, 2020. "Optimal deployment of emergency rescue stations in an urban transportation corridor," Transportation, Springer, vol. 47(1), pages 445-473, February.
    6. Yudi Zhang & Lei He, 2022. "Research on the Characteristics and Influencing Factors of Community Residents’ Night Evacuation Behavior Based on Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    7. N. Zhang & X. Y. Ni & H. Huang & J. L. Zhao & M. Duarte & J. Zhang, 2016. "The impact of interpersonal pre-warning information dissemination on regional emergency evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2081-2103, February.
    8. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    9. N. Zhang & X. Ni & H. Huang & J. Zhao & M. Duarte & J. Zhang, 2016. "The impact of interpersonal pre-warning information dissemination on regional emergency evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2081-2103, February.
    10. Junji Urata & Adam J. Pel, 2018. "People's Risk Recognition Preceding Evacuation and Its Role in Demand Modeling and Planning," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 889-905, May.
    11. Shi An & Ze Wang & Jianxun Cui, 2015. "Integrating Regret Psychology to Travel Mode Choice for a Transit-Oriented Evacuation Strategy," Sustainability, MDPI, vol. 7(7), pages 1-16, June.
    12. Md Tawfiq Sarwar & Panagiotis Ch. Anastasopoulos & Satish V. Ukkusuri & Pamela Murray-Tuite & Fred L. Mannering, 2018. "A statistical analysis of the dynamics of household hurricane-evacuation decisions," Transportation, Springer, vol. 45(1), pages 51-70, January.
    13. Karabuk, Suleyman & Manzour, Hasan, 2019. "A multi-stage stochastic program for evacuation management under tornado track uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 128-151.
    14. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    15. Hector R. Lim & Ma. Bernadeth B. Lim & Ann Wendy M. Rojas, 2022. "Towards modelling of evacuation behavior and planning for emergency logistics due to the Philippine Taal Volcanic eruption in 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 553-581, October.
    16. Xuedong Yan & Xiaobing Liu & Yulei Song, 2018. "Optimizing evacuation efficiency under emergency with consideration of social fairness based on a cell transmission model," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
    17. Grajdura, Sarah & Niemeier, Deb, 2022. "Improving Our Understanding of Fire Evacuation and Displacement Effects," Institute of Transportation Studies, Working Paper Series qt6h99c6j0, Institute of Transportation Studies, UC Davis.
    18. Ma. Lim & Hector Lim & Mongkut Piantanakulchai & Francis Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    19. Yamada, Takashi, 2022. "Generalizing the probability of reaching a destination in case of route blockage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    20. Shahparvari, Shahrooz & Abbasi, Babak & Chhetri, Prem, 2017. "Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: An Australian case study," Omega, Elsevier, vol. 72(C), pages 96-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:6:p:1550147718783684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.