IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v29y2018i7p1208-1223.html
   My bibliography  Save this article

Life cycle approach in sustainability assessment for petroleum refinery projects with fuzzy-AHP

Author

Listed:
  • Hamidreza Hasheminasab
  • Yaghob Gholipour
  • Mohammadreza Kharrazi
  • Dalia Streimikiene

Abstract

Infrastructure projects, which include a wide range of construction and energy projects, play an important role amid other industrial projects. In this regard, petroleum refinery industry projects are one of the leading manufacturing industries in the world and have the most notable position in the energy industry projects. Developing petroleum refinery industry projects are one of the principal contributors to economic and social development. In spite of the necessity of country development, this development has to be sustained at least in economic, social, and environmental matters (pillars of sustainable development) particularly after the Brundtland Commission Report in 1987. In this paper, it is proposed to simplify the evaluation process of life cycle sustainability versus life cycle stages. Thus, an indicator-based approach is used in order to evaluate the sustainability along different stages of petroleum refinery industry projects. Also, a multi-level hierarchy of criteria decision making is defined by using Analytic Hierarchy Process (AHP), combined with a fuzzy set theory to enhance the reliability of the results. The outputs of this paper will be helpful for decision makers in many ways such as the most important stage with regard to sustainable development matters; or the most important pillars (economic, social, and environmental) of sustainability in each life cycle stage. Also, other valuable outputs based on the results are consequently discussed.

Suggested Citation

  • Hamidreza Hasheminasab & Yaghob Gholipour & Mohammadreza Kharrazi & Dalia Streimikiene, 2018. "Life cycle approach in sustainability assessment for petroleum refinery projects with fuzzy-AHP," Energy & Environment, , vol. 29(7), pages 1208-1223, November.
  • Handle: RePEc:sae:engenv:v:29:y:2018:i:7:p:1208-1223
    DOI: 10.1177/0958305X18772425
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18772425
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18772425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stamford, Laurence & Azapagic, Adisa, 2011. "Sustainability indicators for the assessment of nuclear power," Energy, Elsevier, vol. 36(10), pages 6037-6057.
    2. World Bank, 2006. "Infrastructure at the Crossroads : Lessons from 20 Years of World Bank Experience," World Bank Publications - Books, The World Bank Group, number 7189, December.
    3. Wan Ahmad, Wan Nurul K. & Rezaei, Jafar & de Brito, Marisa P. & Tavasszy, Lóránt A., 2016. "The influence of external factors on supply chain sustainability goals of the oil and gas industry," Resources Policy, Elsevier, vol. 49(C), pages 302-314.
    4. de Lima, Romulo S. & Schaeffer, Roberto, 2011. "The energy efficiency of crude oil refining in Brazil: A Brazilian refinery plant case," Energy, Elsevier, vol. 36(5), pages 3101-3112.
    5. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    6. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    7. Mohammad Hasan Aghdaie & Sarfaraz Hashemkhani Zolfani & Edmundas Kazimieras Zavadskas, 2013. "Market segment evaluation and selection based on application of fuzzy AHP and COPRAS-G methods," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(1), pages 213-233, February.
    8. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    2. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    3. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    4. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    5. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    6. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    7. Mohamed Hanine & Omar Boutkhoum & Tarik Agouti & Abdessadek Tikniouine, 2017. "A new integrated methodology using modified Delphi-fuzzy AHP-PROMETHEE for Geospatial Business Intelligence selection," Information Systems and e-Business Management, Springer, vol. 15(4), pages 897-925, November.
    8. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    9. Ping-Lung Huang & Bruce C.Y. Lee & Chen-Song Wang & Chi-Te Sun, 2017. "Relative Importance of the Factors under the ISO-10015 Quality Management Guidelines that Influence the Service Quality of Certification Bodies," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 13(1), pages 105-137, February.
    10. Rahimdel, Mohammad Javad & Noferesti, Hossein, 2020. "Investment preferences of Iran's mineral extraction sector with a focus on the productivity of the energy consumption, water and labor force," Resources Policy, Elsevier, vol. 67(C).
    11. María Carmen Carnero & Andrés Gómez, 2019. "Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care," Sustainability, MDPI, vol. 11(10), pages 1-31, May.
    12. Yibin Zhang & Kevin W. Li & Zhou-Jing Wang, 2017. "Prioritization and Aggregation of Intuitionistic Preference Relations: A Multiplicative-Transitivity-Based Transformation from Intuitionistic Judgment Data to Priority Weights," Group Decision and Negotiation, Springer, vol. 26(2), pages 409-436, March.
    13. Babak Daneshvar Rouyendegh & Kazim Topuz & Ali Dag & Asil Oztekin, 2019. "An AHP-IFT Integrated Model for Performance Evaluation of E-Commerce Web Sites," Information Systems Frontiers, Springer, vol. 21(6), pages 1345-1355, December.
    14. María Carmen Carnero, 2020. "Fuzzy Multicriteria Models for Decision Making in Gamification," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    15. Calabrese, Armando & Costa, Roberta & Levialdi, Nathan & Menichini, Tamara, 2019. "Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 155-168.
    16. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    17. Minwir Al-Shammari & Mehdi Mili, 2021. "A fuzzy analytic hierarchy process model for customers’ bank selection decision in the Kingdom of Bahrain," Operational Research, Springer, vol. 21(3), pages 1429-1446, September.
    18. Kajal Chatterjee & Sheikh Ahmed Hossain & Samarjit Kar, 2018. "Prioritization of project proposals in portfolio management using fuzzy AHP," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 478-501, June.
    19. Montazar, Aliasghar & Gheidari, Omid Nasiri & Snyder, Richard L., 2013. "A fuzzy analytical hierarchy methodology for the performance assessment of irrigation projects," Agricultural Water Management, Elsevier, vol. 121(C), pages 113-123.
    20. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:29:y:2018:i:7:p:1208-1223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.