IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v18y2007i2p233-249.html
   My bibliography  Save this article

Assessment of Tidal Current Resources: Case Studies of Estuarine and Coastal Sites

Author

Listed:
  • Jack Hardisty

    (Department of Geography, The University of Hull HU6 7RX, UK)

Abstract

The potential for tidal stream power in North Western European waters is large and a number of axial flow, vertical rotor and oscillating hydroplane schemes are approaching full scale design and construction. The accurate determination of the available or potential fluid power is being addressed by, in particular, the regulatory bodies as they move towards the establishment of industry standards and the identification and designation of licensing areas. A generic formulation is developed here which utilises Admiralty tidal diamond data and the arithmetic summation of harmonics due to the lunar semi-diurnal, the solar semi-diurnal and (for shallow water and estuarine sites) the lunar quarter diurnal components. Numerical and sensitivity analyses show that the long term potential power is sensitive to the amplitudes of the harmonics but insensitive to the frequencies and phase differences. The results are applied to estuarine sites off Immingham and at Hull Roads in the Humber and to a shallow water, coastal site off Weston-super-Mare in the Bristol Channel. The results indicate that the shore side energy output from a small scale, meso-generation, 100 m 2 capture area device with 60% efficiency varies from about 600 MWha −1 in the Bristol Channel to about 900 MWha −1 in the Humber where the ebb dominated tide flows for longer durations and at slightly higher speeds.

Suggested Citation

  • Jack Hardisty, 2007. "Assessment of Tidal Current Resources: Case Studies of Estuarine and Coastal Sites," Energy & Environment, , vol. 18(2), pages 233-249, March.
  • Handle: RePEc:sae:engenv:v:18:y:2007:i:2:p:233-249
    DOI: 10.1177/0958305X0701800204
    as

    Download full text from publisher

    File URL: http://eae.sagepub.com/content/18/2/233.abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X0701800204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charlier, Roger H., 2003. "A "sleeper" awakes: tidal current power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 515-529, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    2. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.
    3. Sangiuliano, Stephen Joseph, 2017. "Turning of the tides: Assessing the international implementation of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 971-989.
    4. Goundar, Jai N. & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2012. "Numerical and experimental studies on hydrofoils for marine current turbines," Renewable Energy, Elsevier, vol. 42(C), pages 173-179.
    5. Bai, Guanghui & Li, Wei & Chang, Hao & Li, Guojun, 2016. "The effect of tidal current directions on the optimal design and hydrodynamic performance of a three-turbine system," Renewable Energy, Elsevier, vol. 94(C), pages 48-54.
    6. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    7. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    8. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    9. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    10. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    11. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    12. Nicholls-Lee, R.F. & Turnock, S.R. & Boyd, S.W., 2013. "Application of bend-twist coupled blades for horizontal axis tidal turbines," Renewable Energy, Elsevier, vol. 50(C), pages 541-550.
    13. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    14. Blunden, L.S. & Bahaj, A.S., 2006. "Initial evaluation of tidal stream energy resources at Portland Bill, UK," Renewable Energy, Elsevier, vol. 31(2), pages 121-132.
    15. Rosli, R. & Norman, R. & Atlar, M., 2016. "Experimental investigations of the Hydro-Spinna turbine performance," Renewable Energy, Elsevier, vol. 99(C), pages 1227-1234.
    16. Zanette, J. & Imbault, D. & Tourabi, A., 2010. "A design methodology for cross flow water turbines," Renewable Energy, Elsevier, vol. 35(5), pages 997-1009.
    17. Güney, M.S. & Kaygusuz, K., 2010. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2996-3004, December.
    18. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    19. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal current energy resource assessment in Ireland: Current status and future update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3206-3212, December.
    20. Chen, Long & Lam, Wei-Haur, 2014. "Slipstream between marine current turbine and seabed," Energy, Elsevier, vol. 68(C), pages 801-810.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:18:y:2007:i:2:p:233-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.