IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0248437.html
   My bibliography  Save this article

Assessing the contagiousness of mass shootings with nonparametric Hawkes processes

Author

Listed:
  • Peter Boyd
  • James Molyneux

Abstract

Gun violence and mass shootings are high-profile epidemiological issues facing the United States with questions regarding their contagiousness gaining prevalence in news media. Through the use of nonparametric Hawkes processes, we examine the evidence for the existence of contagiousness within a catalog of mass shootings and highlight the broader benefits of using such nonparametric point process models in modeling the occurrence of such events.

Suggested Citation

  • Peter Boyd & James Molyneux, 2021. "Assessing the contagiousness of mass shootings with nonparametric Hawkes processes," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0248437
    DOI: 10.1371/journal.pone.0248437
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248437
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248437&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0248437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meindl, J.N. & Ivy, J.W., 2017. "Mass shootings: The role of the media in promoting generalized imitation," American Journal of Public Health, American Public Health Association, vol. 107(3), pages 368-370.
    2. repec:aph:ajpbhl:10.2105/ajph.2016.303611_2 is not listed on IDEAS
    3. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    4. Jetter, Michael & Walker, Jay K., 2018. "The Effect of Media Coverage on Mass Shootings," IZA Discussion Papers 11900, Institute of Labor Economics (IZA).
    5. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    6. Felipe Gerhard & Moritz Deger & Wilson Truccolo, 2017. "On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-31, February.
    7. Robert Alan Clements & Frederic Paik Schoenberg & Alejandro Veen, 2012. "Evaluation of space–time point process models using super‐thinning," Environmetrics, John Wiley & Sons, Ltd., vol. 23(7), pages 606-616, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Peng & Wen, Feier & Li, Yan & Chen, Dianhan, 2021. "Multi-agent modeling of crowd dynamics under mass shooting cases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    2. Philip A. White & Alan E. Gelfand, 2021. "Generalized Evolutionary Point Processes: Model Specifications and Model Comparison," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1001-1021, September.
    3. Giada Adelfio & Marcello Chiodi, 2021. "Including covariates in a space-time point process with application to seismicity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 947-971, September.
    4. Alex Reinhart & Joel Greenhouse, 2018. "Self‐exciting point processes with spatial covariates: modelling the dynamics of crime," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1305-1329, November.
    5. Emmanuel Bacry & Jean-Francois Muzy, 2014. "Second order statistics characterization of Hawkes processes and non-parametric estimation," Papers 1401.0903, arXiv.org, revised Feb 2015.
    6. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    7. Brodeur, Abel & Yousaf, Hasin, 2019. "The Economics of Mass Shootings," IZA Discussion Papers 12728, Institute of Labor Economics (IZA).
    8. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    9. Harris, J. Andrew & Posner, Daniel N., 2022. "Does decentralization encourage pro-poor targeting? Evidence from Kenya’s constituencies development fund," World Development, Elsevier, vol. 155(C).
    10. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    11. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
    12. Gian Maria Campedelli & Alberto Aziani & Serena Favarin, 2020. "Exploring the Effects of COVID-19 Containment Policies on Crime: An Empirical Analysis of the Short-term Aftermath in Los Angeles," Papers 2003.11021, arXiv.org, revised Oct 2020.
    13. Boswijk, H. Peter & Laeven, Roger J.A. & Yang, Xiye, 2018. "Testing for self-excitation in jumps," Journal of Econometrics, Elsevier, vol. 203(2), pages 256-266.
    14. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    15. Bao, Zemin & Liu, Yun & Zhang, Zhenjiang & Liu, Hui & Cheng, Junjun, 2019. "Predicting popularity via a generative model with adaptive peeking window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 54-68.
    16. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    17. Aparna Soni & Erdal Tekin, 2020. "How Do Mass Shootings Affect Community Wellbeing?," NBER Working Papers 28122, National Bureau of Economic Research, Inc.
    18. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org.
    19. Mateo Dulce Rubio, 2019. "Predicting criminal behavior with Levy flights using real data from Bogota," Documentos de Trabajo 17347, Quantil.
    20. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0248437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.