IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v67y2016i8d10.1057_jors.2015.113.html
   My bibliography  Save this article

A mixed integer formulation and an efficient metaheuristic procedure for the k-Travelling Repairmen Problem

Author

Listed:
  • Samuel Nucamendi-Guillén

    (Universidad Panamericana)

  • Iris Martínez-Salazar

    (Universidad Autónoma de Nuevo León)

  • Francisco Angel-Bello

    (Tecnologico de Monterrey)

  • J Marcos Moreno-Vega

    (Universidad de La Laguna)

Abstract

In this paper, we study a k-Travelling Repairmen Problem where the objective is to minimize the sum of clients waiting time to receive service. This problem is relevant in applications that involve distribution of humanitarian aid in disaster areas, delivery and collection of perishable products and personnel transportation, where reaching demand points to perform service, fast and fair, is a priority. This paper presents a new mixed integer formulation and a simple and efficient metaheuristic algorithm. The proposed formulation consumes less computational time and allows solving to optimality more than three times larger data instances than the previous formulation published in literature, even outperforming a recently published Branch and Price and Cut algorithm for this problem. The proposed metaheuristic algorithm solved to optimality 386 out of 389 tested instances in a very short computational time. For larger instances, the algorithm was assessed using the best results reported in the literature for the Cumulative Capacitated Vehicle Routing Problem.

Suggested Citation

  • Samuel Nucamendi-Guillén & Iris Martínez-Salazar & Francisco Angel-Bello & J Marcos Moreno-Vega, 2016. "A mixed integer formulation and an efficient metaheuristic procedure for the k-Travelling Repairmen Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1121-1134, August.
  • Handle: RePEc:pal:jorsoc:v:67:y:2016:i:8:d:10.1057_jors.2015.113
    DOI: 10.1057/jors.2015.113
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2015.113
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2015.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Potvin, Jean-Yves & Rousseau, Jean-Marc, 1993. "A parallel route building algorithm for the vehicle routing and scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 66(3), pages 331-340, May.
    2. Luo, Zhixing & Qin, Hu & Lim, Andrew, 2014. "Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints," European Journal of Operational Research, Elsevier, vol. 234(1), pages 49-60.
    3. Silva, Marcos Melo & Subramanian, Anand & Vidal, Thibaut & Ochi, Luiz Satoru, 2012. "A simple and effective metaheuristic for the Minimum Latency Problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 513-520.
    4. Lysgaard, Jens & Wøhlk, Sanne, 2014. "A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 800-810.
    5. SALEHIPOUR, Amir & SÖRENSEN, Kenneth & GOOS, Peter & BRÄYSY, Olli, 2008. "An efficient GRASP+VND metaheuristic for the traveling repairman problem," Working Papers 2008008, University of Antwerp, Faculty of Business and Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Bruni, M.E. & Khodaparasti, S. & Beraldi, P., 2020. "The selective minimum latency problem under travel time variability: An application to post-disaster assessment operations," Omega, Elsevier, vol. 92(C).
    3. F. Angel-Bello & Y. Cardona-Valdés & A. Álvarez, 2019. "Mixed integer formulations for the multiple minimum latency problem," Operational Research, Springer, vol. 19(2), pages 369-398, June.
    4. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    5. Vahid Akbari & İhsan Sadati & F. Sibel Salman & Davood Shiri, 2023. "Minimizing total weighted latency in home healthcare routing and scheduling with patient prioritization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 807-852, September.
    6. Albert Einstein Fernandes Muritiba & Tibérius O. Bonates & Stênio Oliveira Da Silva & Manuel Iori, 2021. "Branch-and-Cut and Iterated Local Search for the Weighted k -Traveling Repairman Problem: An Application to the Maintenance of Speed Cameras," Transportation Science, INFORMS, vol. 55(1), pages 139-159, 1-2.
    7. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2022. "Routing multiple work teams to minimize latency in post-disaster road network restoration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 237-254.
    8. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2019. "Minimizing latency in post-disaster road clearance operations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1098-1112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rivera, Juan Carlos & Murat Afsar, H. & Prins, Christian, 2016. "Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 249(1), pages 93-104.
    2. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2022. "Routing multiple work teams to minimize latency in post-disaster road network restoration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 237-254.
    3. Sze, Jeeu Fong & Salhi, Said & Wassan, Niaz, 2017. "The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 162-184.
    4. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    5. Akbari, Vahid & Shiri, Davood, 2021. "Weighted online minimum latency problem with edge uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 51-65.
    6. Ling Liu & Wenli Li & Kunpeng Li & Xuxia Zou, 2020. "A coordinated production and transportation scheduling problem with minimum sum of order delivery times," Journal of Heuristics, Springer, vol. 26(1), pages 33-58, February.
    7. Yu, Mingzhu & Qi, Xiangtong, 2014. "A vehicle routing problem with multiple overlapped batches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 40-55.
    8. Bruni, M.E. & Khodaparasti, S. & Beraldi, P., 2020. "The selective minimum latency problem under travel time variability: An application to post-disaster assessment operations," Omega, Elsevier, vol. 92(C).
    9. David A. Flores-Garza & M. Angélica Salazar-Aguilar & Sandra Ulrich Ngueveu & Gilbert Laporte, 2017. "The multi-vehicle cumulative covering tour problem," Annals of Operations Research, Springer, vol. 258(2), pages 761-780, November.
    10. Juan Rivera & H. Afsar & Christian Prins, 2015. "A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem," Computational Optimization and Applications, Springer, vol. 61(1), pages 159-187, May.
    11. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2019. "Minimizing latency in post-disaster road clearance operations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1098-1112.
    12. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    14. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    15. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    16. Song, Yujian & Zhang, Jiantong & Liang, Zhe & Ye, Chunming, 2017. "An exact algorithm for the container drayage problem under a separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 231-254.
    17. Ribeiro, Glaydston Mattos & Laporte, Gilbert & Mauri, Geraldo Regis, 2012. "A comparison of three metaheuristics for the workover rig routing problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 28-36.
    18. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    19. F. Angel-Bello & Y. Cardona-Valdés & A. Álvarez, 2019. "Mixed integer formulations for the multiple minimum latency problem," Operational Research, Springer, vol. 19(2), pages 369-398, June.
    20. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:67:y:2016:i:8:d:10.1057_jors.2015.113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.