IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i2d10.1057_palgrave.jors.2601703.html
   My bibliography  Save this article

A demonstration of the utility of fractional experimental design for finding optimal genetic algorithm parameter settings

Author

Listed:
  • D J Stewardson

    (University of Newcastle)

  • R I Whitfield

    (University of Strathclyde)

Abstract

This paper demonstrates that the use of sparse experimental design in the development of the structure for genetic algorithms, and hence other computer programs, is a particularly effective and efficient strategy. Despite widespread knowledge of the existence of these systematic experimental plans, they have seen limited application in the investigation of advanced computer programs. This paper attempts to address this missed opportunity and encourage others to take advantage of the power of these plans. Using data generated from a full factorial experimental design, involving 27 experimental runs that was used to assess the optimum operating settings of the parameters of a special genetic algorithm (GA), we show that similar results could have been obtained using as few as nine runs. The GA was used to find minimum cost schedules for a complex component assembly operation with many sub-processes.

Suggested Citation

  • D J Stewardson & R I Whitfield, 2004. "A demonstration of the utility of fractional experimental design for finding optimal genetic algorithm parameter settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 132-138, February.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:2:d:10.1057_palgrave.jors.2601703
    DOI: 10.1057/palgrave.jors.2601703
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601703
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dave Stewardson & David Porter & Tony Kelly, 2001. "The dangers posed by saddle points, and other problems, when using central composite designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(3-4), pages 485-495.
    2. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    3. Pongcharoen, P. & Hicks, C. & Braiden, P. M., 2004. "The development of genetic algorithms for the finite capacity scheduling of complex products, with multiple levels of product structure," European Journal of Operational Research, Elsevier, vol. 152(1), pages 215-225, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Carpintero & Jennifer Villa-Dominguez & María José Tavera-Quiroz & Humberto Carlos Tavera-Quiroz & Bartosz Kaźmierczak & Jonathan Fábregas-Villegas & Fausto A. Canales, 2022. "Application of a 2 k–p Fractional Experimental Design in Coagulation-Flocculation Processes in the Treatment of Wastewater from a Slaughterhouse," Sustainability, MDPI, vol. 14(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    2. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    3. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    4. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    5. Taudes, Alfred & Trcka, Michael & Lukanowicz, Martin, 2002. "Organizational learning in production networks," Journal of Economic Behavior & Organization, Elsevier, vol. 47(2), pages 141-163, February.
    6. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    7. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    8. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    9. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    10. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.
    11. Sabuncuoglu, I. & Bayiz, M., 1999. "Job shop scheduling with beam search," European Journal of Operational Research, Elsevier, vol. 118(2), pages 390-412, October.
    12. Mukherjee, Saral & Chatterjee Ashis K, 2002. "Applying Machine Based Decomposition in 2-Machine Flow Shops," IIMA Working Papers WP2002-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    14. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    15. Raúl Mencía & Carlos Mencía, 2021. "One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
    16. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    17. Mehdi Mrad & Anis Gharbi & Mohamed Haouari & Mohamed Kharbeche, 2016. "An optimization-based heuristic for the machine reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 115-132, July.
    18. Andrea D’Ariano & Marco Pranzo, 2009. "An Advanced Real-Time Train Dispatching System for Minimizing the Propagation of Delays in a Dispatching Area Under Severe Disturbances," Networks and Spatial Economics, Springer, vol. 9(1), pages 63-84, March.
    19. Sheen, Gwo-Ji & Liao, Lu-Wen, 2007. "A branch and bound algorithm for the one-machine scheduling problem with minimum and maximum time lags," European Journal of Operational Research, Elsevier, vol. 181(1), pages 102-116, August.
    20. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:2:d:10.1057_palgrave.jors.2601703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.