IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i4p833-848..html
   My bibliography  Save this article

A test for the absence of aliasing or local white noise in locally stationary wavelet time series

Author

Listed:
  • I A Eckley
  • G P Nason

Abstract

SUMMARYAliasing is often overlooked in time series analysis but can seriously distort the spectrum, the autocovariance and their estimates. We show that dyadic subsampling of a locally stationary wavelet process, which can cause aliasing, results in a process that is the sum of asymptotic white noise and another locally stationary wavelet process with a modified spectrum. We develop a test for the absence of aliasing in a locally stationary wavelet series at a fixed location, and illustrate its application on simulated data and a wind energy time series. A useful by-product is a new test for local white noise. The tests are robust with respect to model misspecification in that the analysis and synthesis wavelets do not need to be identical. Hence, in principle, the tests work irrespective of which wavelet is used to analyse the time series, although in practice there is a trade-off between increasing statistical power and time localization of the test.

Suggested Citation

  • I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:833-848.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy040
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lars Winkelmann, 2016. "Forward guidance and the predictability of monetary policy: a wavelet-based jump detection approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(2), pages 299-314, February.
    2. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    3. de Menezes, Lilian M. & Houllier, Melanie A. & Tamvakis, Michael, 2016. "Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices," Energy Policy, Elsevier, vol. 88(C), pages 613-627.
    4. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    5. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    6. Antonis A. Michis, 2009. "Forecasting brand sales with wavelet decompositions of related causal series," International Journal of Business Forecasting and Marketing Intelligence, Inderscience Enterprises Ltd, vol. 1(2), pages 95-110.
    7. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.
    8. Piotr Fryzlewicz & Guy P. Nason, 2006. "Haar–Fisz estimation of evolutionary wavelet spectra," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 611-634, September.
    9. Sfetsos, A., 2002. "A novel approach for the forecasting of mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 27(2), pages 163-174.
    10. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    11. Fryzlewicz, Piotr & van Bellegem, Sébastien & von Sachs, Rainer, 2003. "Forecasting non-stationary time series by wavelet process modelling," LSE Research Online Documents on Economics 25830, London School of Economics and Political Science, LSE Library.
    12. Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
    13. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    14. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
    2. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    3. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    4. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    5. Tata Subba Rao & Granville Tunnicliffe Wilson & Alessandro Cardinali & Guy P. Nason, 2017. "Locally Stationary Wavelet Packet Processes: Basis Selection and Model Fitting," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 151-174, March.
    6. Triantafyllopoulos, K. & Nason, G.P., 2009. "A note on state space representations of locally stationary wavelet time series," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 50-54, January.
    7. Guy Nason & Kara Stevens, 2015. "Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-24, September.
    8. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    9. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    10. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
    12. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    13. Holger Dette & Weichi Wu, 2020. "Prediction in locally stationary time series," Papers 2001.00419, arXiv.org, revised Jan 2020.
    14. Euan T. McGonigle & Rebecca Killick & Matthew A. Nunes, 2022. "Trend locally stationary wavelet processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 895-917, November.
    15. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    16. Lars Winkelmann, 2013. "Quantitative forward guidance and the predictability of monetary policy - A wavelet based jump detection approach -," SFB 649 Discussion Papers SFB649DP2013-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    17. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    18. Fryzlewicz, Piotr, 2018. "Likelihood ratio Haar variance stabilization and normalization for Poisson and other non-Gaussian noise removal," LSE Research Online Documents on Economics 82942, London School of Economics and Political Science, LSE Library.
    19. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.
    20. Clark, Andrew, 2022. "Causality in the aluminum market," Journal of Commodity Markets, Elsevier, vol. 27(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:833-848.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.