IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i5d10.1038_s41560-021-00775-z.html
   My bibliography  Save this article

New roads and challenges for fuel cells in heavy-duty transportation

Author

Listed:
  • David A. Cullen

    (Oak Ridge National Laboratory)

  • K. C. Neyerlin

    (National Renewable Energy Laboratory)

  • Rajesh K. Ahluwalia

    (Energy Systems Division, Argonne National Laboratory)

  • Rangachary Mukundan

    (Materials Physics and Applications Division, Los Alamos National Laboratory)

  • Karren L. More

    (Oak Ridge National Laboratory)

  • Rodney L. Borup

    (Materials Physics and Applications Division, Los Alamos National Laboratory)

  • Adam Z. Weber

    (Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory)

  • Deborah J. Myers

    (Chemical Sciences and Engineering Division, Argonne National Laboratory)

  • Ahmet Kusoglu

    (Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory)

Abstract

The recent release of hydrogen economy roadmaps for several major countries emphasizes the need for accelerated worldwide investment in research and development activities for hydrogen production, storage, infrastructure and utilization in transportation, industry and the electrical grid. Due to the high gravimetric energy density of hydrogen, the focus of technologies that utilize this fuel has recently shifted from light-duty automotive to heavy-duty vehicle applications. Decades of development of cost-effective and durable polymer electrolyte membrane fuel cells must now be leveraged to meet the increased efficiency and durability requirements of the heavy-duty vehicle market. This Review summarizes the latest market outlooks and targets for truck, bus, locomotive and marine applications. Required changes to the fuel-cell system and operating conditions for meeting Class 8 long-haul truck targets are presented. The necessary improvements in fuel-cell materials and integration are also discussed against the benchmark of current passenger fuel-cell electric vehicles.

Suggested Citation

  • David A. Cullen & K. C. Neyerlin & Rajesh K. Ahluwalia & Rangachary Mukundan & Karren L. More & Rodney L. Borup & Adam Z. Weber & Deborah J. Myers & Ahmet Kusoglu, 2021. "New roads and challenges for fuel cells in heavy-duty transportation," Nature Energy, Nature, vol. 6(5), pages 462-474, May.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:5:d:10.1038_s41560-021-00775-z
    DOI: 10.1038/s41560-021-00775-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00775-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00775-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jiaze & Wang, Ge & Chen, Siyuan & Zhang, He & Qian, Jiaqi & Mao, Yuxuan, 2022. "Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks," Energy, Elsevier, vol. 254(PA).
    2. Maximilian Grandi & Kurt Mayer & Matija Gatalo & Gregor Kapun & Francisco Ruiz-Zepeda & Bernhard Marius & Miran Gaberšček & Viktor Hacker, 2021. "The Influence Catalyst Layer Thickness on Resistance Contributions of PEMFC Determined by Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(21), pages 1-18, November.
    3. Arent, Douglas J. & Green, Peter & Abdullah, Zia & Barnes, Teresa & Bauer, Sage & Bernstein, Andrey & Berry, Derek & Berry, Joe & Burrell, Tony & Carpenter, Birdie & Cochran, Jaquelin & Cortright, Ran, 2022. "Challenges and opportunities in decarbonizing the U.S. energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Jason K. Lee & Grace Anderson & Andrew W. Tricker & Finn Babbe & Arya Madan & David A. Cullen & José’ D. Arregui-Mena & Nemanja Danilovic & Rangachary Mukundan & Adam Z. Weber & Xiong Peng, 2023. "Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    6. Farrell, Niall, 2023. "Policy design for green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Zhang, Lu & Li, Zizhao & Wang, Mingkai & Wang, He & Wang, Bozheng & Wang, Xizhong, 2022. "Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation," Applied Energy, Elsevier, vol. 306(PB).
    8. Shao, Yangbin & Xu, Liangfei & Hu, Zunyan & Xu, Ling & Zhao, Yang & Zhao, Guanlei & Li, Jianqiu & Ouyang, Minggao, 2023. "Investigation on the performance heterogeneity within a fuel cell stack considering non-isopotential of bipolar plates," Energy, Elsevier, vol. 263(PB).
    9. Rania M. Ghoniem & Ali Alahmer & Hegazy Rezk & Samer As’ad, 2023. "Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    10. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    11. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    12. Lee, Jason K. & Schuler, Tobias & Bender, Guido & Sabharwal, Mayank & Peng, Xiong & Weber, Adam Z. & Danilovic, Nemanja, 2023. "Interfacial engineering via laser ablation for high-performing PEM water electrolysis," Applied Energy, Elsevier, vol. 336(C).
    13. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    14. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    15. Srivastava, Vivek & Schaub, Joschka & Pischinger, Stefan, 2023. "Model-based closed-loop control strategies for flex-fuel capability," Applied Energy, Elsevier, vol. 350(C).
    16. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Yan, Yan & Xu, Zhan & Han, Feng & Wang, Zhao & Ni, Zhonghua, 2022. "Energy control of providing cryo-compressed hydrogen for the heavy-duty trucks driving," Energy, Elsevier, vol. 242(C).
    18. Meng, L.Y. & Wang, G.F. & See, K.W. & Wang, Y.P. & Zhang, Y. & Zang, C.Y. & Li, S. & Xie, B., 2023. "Explosion characteristic of CH4–H2-Air mixtures vented by encapsulated large-scale Li-ion battery under thermal runaway," Energy, Elsevier, vol. 278(PA).
    19. Xun, Dengye & Hao, Han & Sun, Xin & Geng, Jingxuan & Liu, Zongwei & Zhao, Fuquan, 2022. "Modeling the evolvement of regional fuel cell vehicle supply chain: Implications for enhancing supply chain sustainability," International Journal of Production Economics, Elsevier, vol. 249(C).
    20. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:5:d:10.1038_s41560-021-00775-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.