IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41087-y.html
   My bibliography  Save this article

Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition

Author

Listed:
  • Lei Li

    (Tsinghua University
    Beijing Institute of Technology)

  • Yiqian Zhou

    (Tsinghua University)

  • Yang Gao

    (Peking University)

  • Xuning Feng

    (Tsinghua University)

  • Fangshu Zhang

    (Tsinghua University)

  • Weiwei Li

    (North University of China)

  • Bin Zhu

    (Nanjing University)

  • Ze Tian

    (Tsinghua University)

  • Peixun Fan

    (Tsinghua University)

  • Minlin Zhong

    (Tsinghua University)

  • Huichang Niu

    (Guangdong Huitian Aerospace Technology Co., Ltd)

  • Shanyu Zhao

    (Swiss Federal Laboratories for Materials Science and Technology, Empa)

  • Xiaoding Wei

    (Peking University)

  • Jia Zhu

    (Nanjing University)

  • Hui Wu

    (Tsinghua University)

Abstract

Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al2O3·SiO2 nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi0.8Co0.1Mn0.1O2 cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications.

Suggested Citation

  • Lei Li & Yiqian Zhou & Yang Gao & Xuning Feng & Fangshu Zhang & Weiwei Li & Bin Zhu & Ze Tian & Peixun Fan & Minlin Zhong & Huichang Niu & Shanyu Zhao & Xiaoding Wei & Jia Zhu & Hui Wu, 2023. "Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41087-y
    DOI: 10.1038/s41467-023-41087-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41087-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41087-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    2. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Chao Jia & Lei Li & Ying Liu & Ben Fang & He Ding & Jianan Song & Yibo Liu & Kejia Xiang & Sen Lin & Ziwei Li & Wenjie Si & Bo Li & Xing Sheng & Dongze Wang & Xiaoding Wei & Hui Wu, 2020. "Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Shanyu Zhao & Gilberto Siqueira & Sarka Drdova & David Norris & Christopher Ubert & Anne Bonnin & Sandra Galmarini & Michal Ganobjak & Zhengyuan Pan & Samuel Brunner & Gustav Nyström & Jing Wang & Mat, 2020. "Additive manufacturing of silica aerogels," Nature, Nature, vol. 584(7821), pages 387-392, August.
    5. Huai-Ling Gao & Yin-Bo Zhu & Li-Bo Mao & Feng-Chao Wang & Xi-Sheng Luo & Yang-Yi Liu & Yang Lu & Zhao Pan & Jin Ge & Wei Shen & Ya-Rong Zheng & Liang Xu & Lin-Jun Wang & Wei-Hong Xu & Heng-An Wu & Shu, 2016. "Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    6. Lu An & Zipeng Guo & Zheng Li & Yu Fu & Yong Hu & Yulong Huang & Fei Yao & Chi Zhou & Shenqiang Ren, 2022. "Tailoring thermal insulation architectures from additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Smith & Jiayue Hu & Anthony Griffin & Mark Robertson & Alejandro Güillen Obando & Ethan Bounds & Carmen B. Dunn & Changhuai Ye & Ling Liu & Zhe Qiang, 2024. "Accurate additive manufacturing of lightweight and elastic carbons using plastic precursors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Xiaota Cheng & Yi-Tao Liu & Yang Si & Jianyong Yu & Bin Ding, 2022. "Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Lei Su & Shuhai Jia & Junqiang Ren & Xuefeng Lu & Sheng-Wu Guo & Pengfei Guo & Zhixin Cai & De Lu & Min Niu & Lei Zhuang & Kang Peng & Hongjie Wang, 2023. "Strong yet flexible ceramic aerogel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    6. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    8. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    11. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    12. Lishan Li & Guandu Yang & Jing Lyu & Zhizhi Sheng & Fengguo Ma & Xuetong Zhang, 2023. "Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    14. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Ouyang, Nan & Zhang, Wencan & Yin, Xiuxing & Li, Xingyao & Xie, Yi & He, Hancheng & Long, Zhuoru, 2023. "A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions," Energy, Elsevier, vol. 273(C).
    16. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    17. Coman, Paul T. & Darcy, Eric C. & Veje, Christian T. & White, Ralph E., 2017. "Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway," Applied Energy, Elsevier, vol. 203(C), pages 189-200.
    18. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    20. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41087-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.