IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17533-6.html
   My bibliography  Save this article

Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances

Author

Listed:
  • Chao Jia

    (Tsinghua University)

  • Lei Li

    (Tsinghua University)

  • Ying Liu

    (Peking University
    Peking University)

  • Ben Fang

    (Peking University
    Peking University)

  • He Ding

    (Beijing Institute of Technology)

  • Jianan Song

    (Tsinghua University)

  • Yibo Liu

    (Tsinghua University)

  • Kejia Xiang

    (Tsinghua University)

  • Sen Lin

    (Tsinghua University)

  • Ziwei Li

    (Tsinghua University)

  • Wenjie Si

    (Tsinghua University)

  • Bo Li

    (Tsinghua University)

  • Xing Sheng

    (Tsinghua University)

  • Dongze Wang

    (Tsinghua University)

  • Xiaoding Wei

    (Peking University
    Peking University)

  • Hui Wu

    (Tsinghua University)

Abstract

Advanced ceramic sponge materials with temperature-invariant high compressibility are urgently needed as thermal insulators, energy absorbers, catalyst carriers, and high temperature air filters. However, the application of ceramic sponge materials is severely limited due to their complex preparation process. Here, we present a facile method for large-scale fabrication of highly compressible, temperature resistant SiO2-Al2O3 composite ceramic sponges by blow spinning and subsequent calcination. We successfully produce anisotropic lamellar ceramic sponges with numerous stacked microfiber layers and density as low as 10 mg cm−3. The anisotropic lamellar ceramic sponges exhibit high compression fatigue resistance, strain-independent zero Poisson’s ratio, robust fire resistance, temperature-invariant compression resilience from −196 to 1000 °C, and excellent thermal insulation with a thermal conductivity as low as 0.034 W m−1 K−1. In addition, the lamellar structure also endows the ceramic sponges with excellent sound absorption properties, representing a promising alternative to existing thermal insulation and acoustic absorption materials.

Suggested Citation

  • Chao Jia & Lei Li & Ying Liu & Ben Fang & He Ding & Jianan Song & Yibo Liu & Kejia Xiang & Sen Lin & Ziwei Li & Wenjie Si & Bo Li & Xing Sheng & Dongze Wang & Xiaoding Wei & Hui Wu, 2020. "Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17533-6
    DOI: 10.1038/s41467-020-17533-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17533-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17533-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Su & Shuhai Jia & Junqiang Ren & Xuefeng Lu & Sheng-Wu Guo & Pengfei Guo & Zhixin Cai & De Lu & Min Niu & Lei Zhuang & Kang Peng & Hongjie Wang, 2023. "Strong yet flexible ceramic aerogel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Dingding Zong & Leitao Cao & Xia Yin & Yang Si & Shichao Zhang & Jianyong Yu & Bin Ding, 2021. "Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Lei Li & Yiqian Zhou & Yang Gao & Xuning Feng & Fangshu Zhang & Weiwei Li & Bin Zhu & Ze Tian & Peixun Fan & Minlin Zhong & Huichang Niu & Shanyu Zhao & Xiaoding Wei & Jia Zhu & Hui Wu, 2023. "Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Xiaota Cheng & Yi-Tao Liu & Yang Si & Jianyong Yu & Bin Ding, 2022. "Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17533-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.