IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36335-0.html
   My bibliography  Save this article

Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting

Author

Listed:
  • Sang Eon Jun

    (Seoul National University)

  • Youn-Hye Kim

    (Yeungnam University)

  • Jaehyun Kim

    (Seoul National University)

  • Woo Seok Cheon

    (Seoul National University)

  • Sungkyun Choi

    (Seoul National University)

  • Jinwook Yang

    (Seoul National University)

  • Hoonkee Park

    (Seoul National University)

  • Hyungsoo Lee

    (Yonsei University)

  • Sun Hwa Park

    (Korea Research Institute of Standards and Science)

  • Ki Chang Kwon

    (Korea Research Institute of Standards and Science)

  • Jooho Moon

    (Yonsei University)

  • Soo-Hyun Kim

    (Ulsan National Institute of Science and Technology)

  • Ho Won Jang

    (Seoul National University
    Seoul National University)

Abstract

Stabilizing atomically dispersed single atoms (SAs) on silicon photoanodes for photoelectrochemical-oxygen evolution reaction is still challenging due to the scarcity of anchoring sites. Here, we elaborately demonstrate the decoration of iridium SAs on silicon photoanodes and assess the role of SAs on the separation and transfer of photogenerated charge carriers. NiO/Ni thin film, an active and highly stable catalyst, is capable of embedding the iridium SAs in its lattices by locally modifying the electronic structure. The isolated iridium SAs enable the effective photogenerated charge transport by suppressing the charge recombination and lower the thermodynamic energy barrier in the potential-determining step. The Ir SAs/NiO/Ni/ZrO2/n-Si photoanode exhibits a benchmarking photoelectrochemical performance with a high photocurrent density of 27.7 mA cm−2 at 1.23 V vs. reversible hydrogen electrode and 130 h stability. This study proposes the rational design of SAs on silicon photoelectrodes and reveals the potential of the iridium SAs to boost photogenerated charge carrier kinetics.

Suggested Citation

  • Sang Eon Jun & Youn-Hye Kim & Jaehyun Kim & Woo Seok Cheon & Sungkyun Choi & Jinwook Yang & Hoonkee Park & Hyungsoo Lee & Sun Hwa Park & Ki Chang Kwon & Jooho Moon & Soo-Hyun Kim & Ho Won Jang, 2023. "Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36335-0
    DOI: 10.1038/s41467-023-36335-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36335-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36335-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dong Young Chung & Pietro P. Lopes & Pedro Farinazzo Bergamo Dias Martins & Haiying He & Tomoya Kawaguchi & Peter Zapol & Hoydoo You & Dusan Tripkovic & Dusan Strmcnik & Yisi Zhu & Soenke Seifert & Su, 2020. "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction," Nature Energy, Nature, vol. 5(3), pages 222-230, March.
    2. Zhanwu Lei & Wenbin Cai & Yifei Rao & Kuan Wang & Yuyuan Jiang & Yang Liu & Xu Jin & Jianming Li & Zhengxing Lv & Shuhong Jiao & Wenhua Zhang & Pengfei Yan & Shuo Zhang & Ruiguo Cao, 2022. "Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Chao Feng & Faze Wang & Zhi Liu & Mamiko Nakabayashi & Yequan Xiao & Qiugui Zeng & Jie Fu & Qianbao Wu & Chunhua Cui & Yifan Han & Naoya Shibata & Kazunari Domen & Ian D. Sharp & Yanbo Li, 2021. "A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Bugra Turan & Jan-Philipp Becker & Félix Urbain & Friedhelm Finger & Uwe Rau & Stefan Haas, 2016. "Upscaling of integrated photoelectrochemical water-splitting devices to large areas," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    5. Zhirong Zhang & Chen Feng & Chunxiao Liu & Ming Zuo & Lang Qin & Xupeng Yan & Yulin Xing & Hongliang Li & Rui Si & Shiming Zhou & Jie Zeng, 2020. "Electrochemical deposition as a universal route for fabricating single-atom catalysts," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. G. Loget & C. Mériadec & V. Dorcet & B. Fabre & A. Vacher & S. Fryars & S. Ababou-Girard, 2019. "Tailoring the photoelectrochemistry of catalytic metal-insulator-semiconductor (MIS) photoanodes by a dissolution method," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Ji-Wook Jang & Chun Du & Yifan Ye & Yongjing Lin & Xiahui Yao & James Thorne & Erik Liu & Gregory McMahon & Junfa Zhu & Ali Javey & Jinghua Guo & Dunwei Wang, 2015. "Enabling unassisted solar water splitting by iron oxide and silicon," Nature Communications, Nature, vol. 6(1), pages 1-5, November.
    8. Kai Ling Zhou & Zelin Wang & Chang Bao Han & Xiaoxing Ke & Changhao Wang & Yuhong Jin & Qianqian Zhang & Jingbing Liu & Hao Wang & Hui Yan, 2021. "Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Huan Yan & Xiaoxu Zhao & Na Guo & Zhiyang Lyu & Yonghua Du & Shibo Xi & Rui Guo & Cheng Chen & Zhongxin Chen & Wei Liu & Chuanhao Yao & Jing Li & Stephen J. Pennycook & Wei Chen & Chenliang Su & Chun , 2018. "Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    10. Kang Jiang & Min Luo & Ming Peng & Yaqian Yu & Ying-Rui Lu & Ting-Shan Chan & Pan Liu & Frank M. F. Groot & Yongwen Tan, 2020. "Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    11. Niancai Cheng & Samantha Stambula & Da Wang & Mohammad Norouzi Banis & Jian Liu & Adam Riese & Biwei Xiao & Ruying Li & Tsun-Kong Sham & Li-Min Liu & Gianluigi A. Botton & Xueliang Sun, 2016. "Platinum single-atom and cluster catalysis of the hydrogen evolution reaction," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    12. Baowen Zhou & Xianghua Kong & Srinivas Vanka & Sheng Chu & Pegah Ghamari & Yichen Wang & Nick Pant & Ishiang Shih & Hong Guo & Zetian Mi, 2018. "Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    13. Lei Zhang & Rutong Si & Hanshuo Liu & Ning Chen & Qi Wang & Keegan Adair & Zhiqiang Wang & Jiatang Chen & Zhongxin Song & Junjie Li & Mohammad Norouzi Banis & Ruying Li & Tsun-Kong Sham & Meng Gu & Li, 2019. "Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Agnes E. Thorarinsdottir & Samuel S. Veroneau & Daniel G. Nocera, 2022. "Self-healing oxygen evolution catalysts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Maheswari Arunachalam & Rohini Subhash Kanase & Kai Zhu & Soon Hyung Kang, 2023. "Reliable bi-functional nickel-phosphate /TiO2 integration enables stable n-GaAs photoanode for water oxidation under alkaline condition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yudi Zhang & Kathryn E. Arpino & Qun Yang & Naoki Kikugawa & Dmitry A. Sokolov & Clifford W. Hicks & Jian Liu & Claudia Felser & Guowei Li, 2022. "Observation of a robust and active catalyst for hydrogen evolution under high current densities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Zhirong Zhang & Chen Feng & Dongdi Wang & Shiming Zhou & Ruyang Wang & Sunpei Hu & Hongliang Li & Ming Zuo & Yuan Kong & Jun Bao & Jie Zeng, 2022. "Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Dong Cao & Haoxiang Xu & Hongliang Li & Chen Feng & Jie Zeng & Daojian Cheng, 2022. "Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Rachela G. Milazzo & Stefania M. S. Privitera & Silvia Scalese & Salvatore A. Lombardo, 2019. "Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction," Energies, MDPI, vol. 12(16), pages 1-11, August.
    12. Hongqiang Jin & Peipei Li & Peixin Cui & Jinan Shi & Wu Zhou & Xiaohu Yu & Weiguo Song & Changyan Cao, 2022. "Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
    14. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
    15. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Haoliang Huang & Yu-Chung Chang & Yu-Cheng Huang & Lili Li & Alexander C. Komarek & Liu Hao Tjeng & Yuki Orikasa & Chih-Wen Pao & Ting-Shan Chan & Jin-Ming Chen & Shu-Chih Haw & Jing Zhou & Yifeng Wan, 2023. "Unusual double ligand holes as catalytic active sites in LiNiO2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Qu Jiang & Sihong Wang & Chaoran Zhang & Ziyang Sheng & Haoyue Zhang & Ruohan Feng & Yuanman Ni & Xiaoan Tang & Yichuan Gu & Xinhong Zhou & Seunghwa Lee & Di Zhang & Fang Song, 2023. "Active oxygen species mediate the iron-promoting electrocatalysis of oxygen evolution reaction on metal oxyhydroxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36335-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.