IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45654-9.html
   My bibliography  Save this article

Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping

Author

Listed:
  • Yiming Zhu

    (Tongji University)

  • Malte Klingenhof

    (Technische Universität Berlin, Department of Chemistry)

  • Chenlong Gao

    (Tongji University)

  • Toshinari Koketsu

    (Technische Universität Berlin, Department of Chemistry)

  • Gregor Weiser

    (Technische Universität Berlin, Department of Chemistry)

  • Yecan Pi

    (Yangzhou University)

  • Shangheng Liu

    (Xiamen University)

  • Lijun Sui

    (Tongji University)

  • Jingrong Hou

    (Tongji University)

  • Jiayi Li

    (Tongji University)

  • Haomin Jiang

    (Baoshan Iron & Steel Co., Ltd.
    State Key Laboratory of Development and Application Technology of Automotive Steels, Baosteel)

  • Limin Xu

    (Baoshan Iron & Steel Co., Ltd.
    Shanghai Engineering Research Center of Metals for Lightweight Transportation)

  • Wei-Hsiang Huang

    (National Synchrotron Radiation Research Center)

  • Chih-Wen Pao

    (National Synchrotron Radiation Research Center)

  • Menghao Yang

    (Tongji University)

  • Zhiwei Hu

    (Max Planck Institute for Chemical Physics of Solids)

  • Peter Strasser

    (Technische Universität Berlin, Department of Chemistry)

  • Jiwei Ma

    (Tongji University)

Abstract

Exploring an active and cost-effective electrocatalyst alternative to carbon-supported platinum nanoparticles for alkaline hydrogen evolution reaction (HER) have remained elusive to date. Here, we report a catalyst based on platinum single atoms (SAs) doped into the hetero-interfaced Ru/RuO2 support (referred to as Pt-Ru/RuO2), which features a low HER overpotential, an excellent stability and a distinctly enhanced cost-based activity compared to commercial Pt/C and Ru/C in 1 M KOH. Advanced physico-chemical characterizations disclose that the sluggish water dissociation is accelerated by RuO2 while Pt SAs and the metallic Ru facilitate the subsequent H* combination. Theoretical calculations correlate with the experimental findings. Furthermore, Pt-Ru/RuO2 only requires 1.90 V to reach 1 A cm−2 and delivers a high price activity in the anion exchange membrane water electrolyzer, outperforming the benchmark Pt/C. This research offers a feasible guidance for developing the noble metal-based catalysts with high performance and low cost toward practical H2 production.

Suggested Citation

  • Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45654-9
    DOI: 10.1038/s41467-024-45654-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45654-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45654-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Kang Jiang & Boyang Liu & Min Luo & Shoucong Ning & Ming Peng & Yang Zhao & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2019. "Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Kang Jiang & Min Luo & Zhixiao Liu & Ming Peng & Dechao Chen & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2021. "Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Guangkai Li & Haeseong Jang & Shangguo Liu & Zijian Li & Min Gyu Kim & Qing Qin & Xien Liu & Jaephil Cho, 2022. "The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yinlong Zhu & Hassan A. Tahini & Zhiwei Hu & Jie Dai & Yubo Chen & Hainan Sun & Wei Zhou & Meilin Liu & Sean C. Smith & Huanting Wang & Zongping Shao, 2019. "Unusual synergistic effect in layered Ruddlesden−Popper oxide enables ultrafast hydrogen evolution," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Zhiqi Zhang & Jiapeng Liu & Jian Wang & Qi Wang & Yuhao Wang & Kai Wang & Zheng Wang & Meng Gu & Zhenghua Tang & Jongwoo Lim & Tianshou Zhao & Francesco Ciucci, 2021. "Single-atom catalyst for high-performance methanol oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Kai Ling Zhou & Zelin Wang & Chang Bao Han & Xiaoxing Ke & Changhao Wang & Yuhong Jin & Qianqian Zhang & Jingbing Liu & Hao Wang & Hui Yan, 2021. "Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Wei Tan & Shaohua Xie & Duy Le & Weijian Diao & Meiyu Wang & Ke-Bin Low & Dave Austin & Sampyo Hong & Fei Gao & Lin Dong & Lu Ma & Steven N. Ehrlich & Talat S. Rahman & Fudong Liu, 2022. "Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Niancai Cheng & Samantha Stambula & Da Wang & Mohammad Norouzi Banis & Jian Liu & Adam Riese & Biwei Xiao & Ruying Li & Tsun-Kong Sham & Li-Min Liu & Gianluigi A. Botton & Xueliang Sun, 2016. "Platinum single-atom and cluster catalysis of the hydrogen evolution reaction," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    13. Kun Qi & Xiaoqiang Cui & Lin Gu & Shansheng Yu & Xiaofeng Fan & Mingchuan Luo & Shan Xu & Ningbo Li & Lirong Zheng & Qinghua Zhang & Jingyuan Ma & Yue Gong & Fan Lv & Kai Wang & Haihua Huang & Wei Zha, 2019. "Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    14. Fanpeng Cheng & Xianyun Peng & Lingzi Hu & Bin Yang & Zhongjian Li & Chung-Li Dong & Jeng-Lung Chen & Liang-Ching Hsu & Lecheng Lei & Qiang Zheng & Ming Qiu & Liming Dai & Yang Hou, 2022. "Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Rui Yao & Kaian Sun & Kaiyang Zhang & Yun Wu & Yujie Du & Qiang Zhao & Guang Liu & Chen Chen & Yuhan Sun & Jinping Li, 2024. "Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Rui Wu & Jie Xu & Chuan-Lin Zhao & Xiao-Zhi Su & Xiao-Long Zhang & Ya-Rong Zheng & Feng-Yi Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Jun Luo & Wei-Xue Li & Min-Rui Gao & Shu-Hong Yu, 2023. "Dopant triggered atomic configuration activates water splitting to hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yudi Zhang & Kathryn E. Arpino & Qun Yang & Naoki Kikugawa & Dmitry A. Sokolov & Clifford W. Hicks & Jian Liu & Claudia Felser & Guowei Li, 2022. "Observation of a robust and active catalyst for hydrogen evolution under high current densities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Kenichi Endo & Masaki Saruyama & Toshiharu Teranishi, 2023. "Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Sang Eon Jun & Youn-Hye Kim & Jaehyun Kim & Woo Seok Cheon & Sungkyun Choi & Jinwook Yang & Hoonkee Park & Hyungsoo Lee & Sun Hwa Park & Ki Chang Kwon & Jooho Moon & Soo-Hyun Kim & Ho Won Jang, 2023. "Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Ziqi Zhang & Zhe Zhang & Cailing Chen & Rui Wang & Minggang Xie & Sheng Wan & Ruige Zhang & Linchuan Cong & Haiyan Lu & Yu Han & Wei Xing & Zhan Shi & Shouhua Feng, 2024. "Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Yinghao Li & Chun-Kuo Peng & Huimin Hu & San-Yuan Chen & Jin-Ho Choi & Yan-Gu Lin & Jong-Min Lee, 2022. "Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Rachela G. Milazzo & Stefania M. S. Privitera & Silvia Scalese & Salvatore A. Lombardo, 2019. "Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction," Energies, MDPI, vol. 12(16), pages 1-11, August.
    20. Li, Dandan & Ding, Lei & Zhao, Qiang & Yang, Feng & Zhang, Sihang, 2024. "Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting," Applied Energy, Elsevier, vol. 356(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45654-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.