IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36136-5.html
   My bibliography  Save this article

Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation

Author

Listed:
  • Binhe Luo

    (Beijing Normal University)

  • Dehai Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yao Ge

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Aiguo Dai

    (University at Albany, State University of New York)

  • Lin Wang

    (Chinese Academy of Sciences)

  • Ian Simmonds

    (University of Melbourne)

  • Cunde Xiao

    (Beijing Normal University)

  • Lixin Wu

    (Ocean University of China, Qingdao 266100, China and Laoshan Laboratory)

  • Yao Yao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Winter Arctic sea-ice concentration (SIC) decline plays an important role in Arctic amplification which, in turn, influences Arctic ecosystems, midlatitude weather and climate. SIC over the Barents-Kara Seas (BKS) shows large interannual variations, whose origin is still unclear. Here we find that interannual variations in winter BKS SIC have significantly strengthened in recent decades likely due to increased amplitudes of the El Niño-Southern Oscillation (ENSO) in a warming climate. La Niña leads to enhanced Atlantic Hadley cell and a positive phase North Atlantic Oscillation-like anomaly pattern, together with concurring Ural blocking, that transports Atlantic ocean heat and atmospheric moisture toward the BKS and promotes sea-ice melting via intensified surface warming. The reverse is seen during El Niño which leads to weakened Atlantic poleward transport and an increase in the BKS SIC. Thus, interannual variability of the BKS SIC partly originates from ENSO via the Atlantic pathway.

Suggested Citation

  • Binhe Luo & Dehai Luo & Yao Ge & Aiguo Dai & Lin Wang & Ian Simmonds & Cunde Xiao & Lixin Wu & Yao Yao, 2023. "Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36136-5
    DOI: 10.1038/s41467-023-36136-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36136-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36136-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiping Liu & Mirong Song & Zhu Zhu & Radley M. Horton & Yongyun Hu & Shang-Ping Xie, 2022. "Arctic sea-ice loss is projected to lead to more frequent strong El Niño events," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Seymour Laxon & Neil Peacock & Doug Smith, 2003. "High interannual variability of sea ice thickness in the Arctic region," Nature, Nature, vol. 425(6961), pages 947-950, October.
    3. Dawei Li & Rong Zhang & Thomas R. Knutson, 2017. "On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    4. Jiechun Deng & Aiguo Dai, 2022. "Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Aiguo Dai & Dehai Luo & Mirong Song & Jiping Liu, 2019. "Arctic amplification is caused by sea-ice loss under increasing CO2," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    6. James E. Overland & Klaus Dethloff & Jennifer A. Francis & Richard J. Hall & Edward Hanna & Seong-Joong Kim & James A. Screen & Theodore G. Shepherd & Timo Vihma, 2016. "Nonlinear response of mid-latitude weather to the changing Arctic," Nature Climate Change, Nature, vol. 6(11), pages 992-999, November.
    7. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    8. Yoko Yamagami & Masahiro Watanabe & Masato Mori & Jun Ono, 2022. "Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Wenju Cai & Guojian Wang & Agus Santoso & Michael J. McPhaden & Lixin Wu & Fei-Fei Jin & Axel Timmermann & Mat Collins & Gabriel Vecchi & Matthieu Lengaigne & Matthew H. England & Dietmar Dommenget & , 2015. "Increased frequency of extreme La Niña events under greenhouse warming," Nature Climate Change, Nature, vol. 5(2), pages 132-137, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    4. D. M. Smith & R. Eade & M. B. Andrews & H. Ayres & A. Clark & S. Chripko & C. Deser & N. J. Dunstone & J. García-Serrano & G. Gastineau & L. S. Graff & S. C. Hardiman & B. He & L. Hermanson & T. Jung , 2022. "Robust but weak winter atmospheric circulation response to future Arctic sea ice loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Yufei Zou & Philip J. Rasch & Hailong Wang & Zuowei Xie & Rudong Zhang, 2021. "Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Working Papers 21-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    7. Dongmei Feng & Colin J. Gleason & Peirong Lin & Xiao Yang & Ming Pan & Yuta Ishitsuka, 2021. "Recent changes to Arctic river discharge," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    9. Yoko Yamagami & Masahiro Watanabe & Masato Mori & Jun Ono, 2022. "Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. David Barber & Matthew Asplin & Richard Raddatz & Lauren Candlish & Scot Nickels & Stephanie Meakin & Klaus Hochheim & Jennifer Lukovich & Ryan Galley & Simon Prinsenberg, 2012. "Change and variability in sea ice during the 2007–2008 Canadian International Polar Year program," Climatic Change, Springer, vol. 115(1), pages 115-133, November.
    11. Jing Peng & Li Dan & Jinming Feng & Kairan Ying & Xiba Tang & Fuqiang Yang, 2021. "Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO 2 to Net Primary Production through CO 2 -Radiative Forcing," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    12. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    13. Clifford Chuwah & Twan Noije & Detlef Vuuren & Philippe Sager & Wilco Hazeleger, 2016. "Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth," Climatic Change, Springer, vol. 134(1), pages 1-14, January.
    14. Hasan Sohail & Virpi Kollanus & Pekka Tiittanen & Alexandra Schneider & Timo Lanki, 2020. "Heat, Heatwaves and Cardiorespiratory Hospital Admissions in Helsinki, Finland," IJERPH, MDPI, vol. 17(21), pages 1-11, October.
    15. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Botao Zhou & Ziyi Song & Zhicong Yin & Xinping Xu & Bo Sun & Pangchi Hsu & Haishan Chen, 2024. "Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Maxim Ogurtsov & Markus Lindholm, 2006. "Uncertainties in Assessing Global Warming during the 20th Century: Disagreement between Key Data Sources," Energy & Environment, , vol. 17(5), pages 685-706, September.
    18. Astghik Mavisakalyan & Vladimir Otrachshenko & Olga Popova, 2023. "Does democracy protect the environment? The role of the Arctic Council," Climatic Change, Springer, vol. 176(5), pages 1-21, May.
    19. Calice,Pietro & Miguel Liriano,Faruk, 2021. "Climate-Related and Environmental Risks for the Banking Sector in Latin America and the Caribbean : A Preliminary Assessment," Policy Research Working Paper Series 9694, The World Bank.
    20. Daniel J. Vecellio & Oliver W. Frauenfeld, 2022. "Surface and sub-surface drivers of autumn temperature increase over Eurasian permafrost," Climatic Change, Springer, vol. 172(1), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36136-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.