IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29810-7.html
   My bibliography  Save this article

Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region

Author

Listed:
  • Jiechun Deng

    (Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology)

  • Aiguo Dai

    (University at Albany, State University of New York)

Abstract

Winter surface air temperature (Tas) over the Barents–Kara Seas (BKS) and other Arctic regions has experienced rapid warming since the late 1990s that has been linked to the concurring cooling over Eurasia, and these multidecadal trends are attributed partly to internal variability. However, how such variability is generated is unclear. Through analyses of observations and model simulations, we show that sea ice–air two-way interactions amplify multidecadal variability in sea-ice cover, sea surface temperatures (SST) and Tas from the North Atlantic to BKS, and the Atlantic Meridional Overturning Circulation (AMOC) mainly through variations in surface fluxes. When sea ice is fixed in flux calculations, multidecadal variations are reduced substantially (by 20–50%) not only in Arctic Tas, but also in North Atlantic SST and AMOC. The results suggest that sea ice–air interactions are crucial for multidecadal climate variability in both the Arctic and North Atlantic, similar to air-sea interactions for tropical climate.

Suggested Citation

  • Jiechun Deng & Aiguo Dai, 2022. "Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29810-7
    DOI: 10.1038/s41467-022-29810-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29810-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29810-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Dai & John C. Fyfe & Shang-Ping Xie & Xingang Dai, 2015. "Decadal modulation of global surface temperature by internal climate variability," Nature Climate Change, Nature, vol. 5(6), pages 555-559, June.
    2. Aiguo Dai & Dehai Luo & Mirong Song & Jiping Liu, 2019. "Arctic amplification is caused by sea-ice loss under increasing CO2," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Camille Lique & Matthew D. Thomas, 2018. "Latitudinal shift of the Atlantic Meridional Overturning Circulation source regions under a warming climate," Nature Climate Change, Nature, vol. 8(11), pages 1013-1020, November.
    4. Florian Sévellec & Alexey V. Fedorov & Wei Liu, 2017. "Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 7(8), pages 604-610, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binhe Luo & Dehai Luo & Yao Ge & Aiguo Dai & Lin Wang & Ian Simmonds & Cunde Xiao & Lixin Wu & Yao Yao, 2023. "Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruyu Gan & Qi Liu & Gang Huang & Kaiming Hu & Xichen Li, 2023. "Greenhouse warming and internal variability increase extreme and central Pacific El Niño frequency since 1980," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Gaddy, Hampton Gray, 2020. "Using local knowledge in emerging infectious disease research," Social Science & Medicine, Elsevier, vol. 258(C).
    3. Beatriz Arellano-Nava & Paul R. Halloran & Chris A. Boulton & James Scourse & Paul G. Butler & David J. Reynolds & Timothy M. Lenton, 2022. "Destabilisation of the Subpolar North Atlantic prior to the Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Roger C. Creel & Frederieke Miesner & Stiig Wilkenskjeld & Jacqueline Austermann & Pier Paul Overduin, 2024. "Glacial isostatic adjustment reduces past and future Arctic subsea permafrost," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Marco Gallegati, 2018. "A systematic wavelet-based exploratory analysis of climatic variables," Climatic Change, Springer, vol. 148(1), pages 325-338, May.
    6. Binhe Luo & Dehai Luo & Yao Ge & Aiguo Dai & Lin Wang & Ian Simmonds & Cunde Xiao & Lixin Wu & Yao Yao, 2023. "Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Yu Wang & Pengcheng Yan & Taichen Feng & Fei Ji & Shankai Tang & Guolin Feng, 2021. "Detection of anthropogenically driven trends in Arctic amplification," Climatic Change, Springer, vol. 169(3), pages 1-17, December.
    8. Jun Meng & Jingfang Fan & Uma S. Bhatt & Jürgen Kurths, 2023. "Arctic weather variability and connectivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Dongmei Feng & Colin J. Gleason & Peirong Lin & Xiao Yang & Ming Pan & Yuta Ishitsuka, 2021. "Recent changes to Arctic river discharge," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Jing Peng & Li Dan & Jinming Feng & Kairan Ying & Xiba Tang & Fuqiang Yang, 2021. "Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO 2 to Net Primary Production through CO 2 -Radiative Forcing," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    13. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    14. Astghik Mavisakalyan & Vladimir Otrachshenko & Olga Popova, 2023. "Does democracy protect the environment? The role of the Arctic Council," Climatic Change, Springer, vol. 176(5), pages 1-21, May.
    15. Daniel J. Vecellio & Oliver W. Frauenfeld, 2022. "Surface and sub-surface drivers of autumn temperature increase over Eurasian permafrost," Climatic Change, Springer, vol. 172(1), pages 1-18, May.
    16. Wenyu Zhou & L. Ruby Leung & Nicholas Siler & Jian Lu, 2023. "Future precipitation increase constrained by climatological pattern of cloud effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Chunxiang Li & Tianbao Zhao & Kairan Ying, 2017. "Quantifying the contributions of anthropogenic and natural forcings to climate changes over arid-semiarid areas during 1946–2005," Climatic Change, Springer, vol. 144(3), pages 505-517, October.
    18. Zhenyu Jin & Yingqing Guo & Chaozhi Qiu, 2022. "Electro-Conversion of Carbon Dioxide to Valuable Chemicals in a Membrane Electrode Assembly," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    19. Poppick, Andrew & McKinnon, Karen A., 2020. "Observation-based Simulations of Humidity and Temperature Using Quantile Regression," Earth Arxiv bmskp, Center for Open Science.
    20. Junju Zhou & Haitao Tang & Yu Qiu & Zhaonan Guo & Chuyu Luo & Xue Wang & Wei Shi & Dongxia Zhang & Chunli Wang & Xuemei Yang & Chunfang Liu & Wei Wei, 2023. "Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019," Sustainability, MDPI, vol. 15(2), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29810-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.