IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35665-9.html
   My bibliography  Save this article

Socioeconomic factors predict population changes of large carnivores better than climate change or habitat loss

Author

Listed:
  • Thomas F. Johnson

    (University of Reading
    University of Sheffield)

  • Nick J. B. Isaac

    (UK Centre for Ecology and Hydrology)

  • Agustin Paviolo

    (CONICET-Universidad Nacional de Misiones, Bertoni 85, (N3370AIA)
    Bertoni 85, (N3370AIA))

  • Manuela González-Suárez

    (University of Reading)

Abstract

Land-use and climate change have been linked to changes in wildlife populations, but the role of socioeconomic factors in driving declines, and promoting population recoveries, remains relatively unexplored. Here, we evaluate potential drivers of population changes observed in 50 species of some of the world’s most charismatic and functionally important fauna—large mammalian carnivores. Our results reveal that human socioeconomic development is more associated with carnivore population declines than habitat loss or climate change. Rapid increases in socioeconomic development are linked to sharp population declines, but, importantly, once development slows, carnivore populations have the potential to recover. The context- and threshold-dependent links between human development and wildlife population health are challenges to the achievement of the UN Sustainable development goals.

Suggested Citation

  • Thomas F. Johnson & Nick J. B. Isaac & Agustin Paviolo & Manuela González-Suárez, 2023. "Socioeconomic factors predict population changes of large carnivores better than climate change or habitat loss," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35665-9
    DOI: 10.1038/s41467-022-35665-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35665-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35665-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Andrew J. Suggitt & Robert J. Wilson & Nick J. B. Isaac & Colin M. Beale & Alistair G. Auffret & Tom August & Jonathan J. Bennie & Humphrey Q. P. Crick & Simon Duffield & Richard Fox & John J. Hopkins, 2018. "Extinction risk from climate change is reduced by microclimatic buffering," Nature Climate Change, Nature, vol. 8(8), pages 713-717, August.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Tatsuya Amano & Tamás Székely & Brody Sandel & Szabolcs Nagy & Taej Mundkur & Tom Langendoen & Daniel Blanco & Candan U. Soykan & William J. Sutherland, 2018. "Successful conservation of global waterbird populations depends on effective governance," Nature, Nature, vol. 553(7687), pages 199-202, January.
    5. Christopher H. Trisos & Cory Merow & Alex L. Pigot, 2020. "The projected timing of abrupt ecological disruption from climate change," Nature, Nature, vol. 580(7804), pages 496-501, April.
    6. Mills, Julianne H. & Waite, Thomas A., 2009. "Economic prosperity, biodiversity conservation, and the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 68(7), pages 2087-2095, May.
    7. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    8. Pallab Majumder & Robert P. Berrens & Alok K. Bohara, 2006. "Is there an environmental kuznets curve for the risk of biodiversity loss?," Journal of Developing Areas, Tennessee State University, College of Business, vol. 39(2), pages 175-190, January-M.
    9. Megan D. Barnes & Ian D. Craigie & Luke B. Harrison & Jonas Geldmann & Ben Collen & Sarah Whitmee & Andrew Balmford & Neil D. Burgess & Thomas Brooks & Marc Hockings & Stephen Woodley, 2016. "Wildlife population trends in protected areas predicted by national socio-economic metrics and body size," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    2. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    3. Zaman, Khalid & Shahbaz, Muhammad & Loganathan, Nanthakumar & Raza, Syed Ali, 2016. "Tourism development, energy consumption and Environmental Kuznets Curve: Trivariate analysis in the panel of developed and developing countries," Tourism Management, Elsevier, vol. 54(C), pages 275-283.
    4. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    5. Iritie, Jean-Jacques, 2015. "Economic Growth, Biodiversity and Conservation Policies in Africa: an Overview," MPRA Paper 62005, University Library of Munich, Germany.
    6. Song, Ma-Lin & Zhang, Wei & Wang, Shu-Hong, 2013. "Inflection point of environmental Kuznets curve in Mainland China," Energy Policy, Elsevier, vol. 57(C), pages 14-20.
    7. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    8. Iritié, Bi Goli Jean Jacques, 2015. "Economic growth and biodiversity: An overview. Conservation policies in Africa," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 8(2), pages 196-208.
    9. Mills Busa, Julianne H., 2013. "Dynamite in the EKC tunnel? Inconsistencies in resource stock analysis under the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 94(C), pages 116-126.
    10. Shokoohi, Zeinab & Dehbidi, Navid Kargar & Tarazkar, Mohammad Hassan, 2022. "Energy intensity, economic growth and environmental quality in populous Middle East countries," Energy, Elsevier, vol. 239(PC).
    11. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    12. Abid, Mehdi, 2016. "Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies," Utilities Policy, Elsevier, vol. 41(C), pages 85-94.
    13. Priscilla Massa-Sánchez & Luis Quintana-Romero & Ronny Correa-Quezada & María de la Cruz del Río-Rama, 2020. "Empirical Evidence in Ecuador between Economic Growth and Environmental Deterioration," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    14. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.
    15. Nilüfer Kaya Kanlı & Bige Küçükefe, 2023. "Is the environmental Kuznets curve hypothesis valid? A global analysis for carbon dioxide emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2339-2367, March.
    16. Klodiana Gorica & Dorina Kripa & Engjellushe Zenela, 2012. "The Role of Local Government in Sustainable Development," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 2(2), pages 139-155, April.
    17. Eyup Dogan & Nigar Taspinar & Korhan K Gokmenoglu, 2019. "Determinants of ecological footprint in MINT countries," Energy & Environment, , vol. 30(6), pages 1065-1086, September.
    18. Zhen Yang & Weijun Gao & Jiawei Li, 2022. "Can Economic Growth and Environmental Protection Achieve a “Win–Win” Situation? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    19. Ahmadova, Gozal & Delgado-Márquez, Blanca L. & Pedauga, Luis E. & Leyva-de la Hiz, Dante I., 2022. "Too good to be true: The inverted U-shaped relationship between home-country digitalization and environmental performance," Ecological Economics, Elsevier, vol. 196(C).
    20. Maolin Li & Yongxun Zhang & Changhong Miao & Lulu He & Jiatao Chen, 2022. "Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020)," Land, MDPI, vol. 11(10), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35665-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.