IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34368-5.html
   My bibliography  Save this article

Generation of Fermat’s spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system

Author

Listed:
  • Yang Xiao

    (The University of Hong Kong)

  • Neil M. Ribe

    (Lab FAST, University Paris-Saclay, CNRS, Bât. 530, Campus Univ)

  • Yage Zhang

    (The University of Hong Kong
    Advanced Biomedical Instrumentation Centre, Hong Kong Science Park)

  • Yi Pan

    (The University of Hong Kong)

  • Yang Cao

    (The University of Hong Kong)

  • Ho Cheung Shum

    (The University of Hong Kong
    Advanced Biomedical Instrumentation Centre, Hong Kong Science Park)

Abstract

The solutal Marangoni effect is attracting increasing interest because of its fundamental role in many isothermal directional transport processes in fluids, including the Marangoni-driven spreading on liquid surfaces or Marangoni convection within a liquid. Here we report a type of continuous Marangoni transport process resulting from Marangoni-driven spreading and Marangoni convection in an aqueous two-phase system. The interaction between a salt (CaCl2) and an anionic surfactant (sodium dodecylbenzenesulfonate) generates surface tension gradients, which drive the transport process. This Marangoni transport consists of the upward transfer of a filament from a droplet located at the bottom of a bulk solution, coiling of the filament near the surface, and formation of Fermat’s spiral patterns on the surface. The bottom-up coiling of the filament, driven by Marangoni convection, may inspire automatic fiber fabrication.

Suggested Citation

  • Yang Xiao & Neil M. Ribe & Yage Zhang & Yi Pan & Yang Cao & Ho Cheung Shum, 2022. "Generation of Fermat’s spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34368-5
    DOI: 10.1038/s41467-022-34368-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34368-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34368-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rangel-Hernandez, V.H. & Damian-Ascencio, C. & Juarez-Robles, D. & Gallegos-Muñoz, A. & Zaleta-Aguilar, A. & Plascencia-Mora, H., 2011. "Entropy generation analysis of a proton exchange membrane fuel cell (PEMFC) with a fermat spiral as a flow distributor," Energy, Elsevier, vol. 36(8), pages 4864-4870.
    2. F. Wodlei & J. Sebilleau & J. Magnaudet & V. Pimienta, 2018. "Marangoni-driven flower-like patterning of an evaporating drop spreading on a liquid substrate," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
    2. Bingqiang Ji & Zhengyu Yang & Jie Feng, 2021. "Compound jetting from bubble bursting at an air-oil-water interface," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Zhan, Zhigang & Yuan, Chong & Hu, Zhangrong & Wang, Hui & Sui, P.C. & Djilali, Ned & Pan, Mu, 2018. "Experimental study on different preheating methods for the cold-start of PEMFC stacks," Energy, Elsevier, vol. 162(C), pages 1029-1040.
    4. Chen, Bo & Zhang, Yuhang & Dai, Zhaofeng & Wang, Chen & Zhang, Xiaosong, 2022. "Experimental research on the dynamics of a train of droplets impacting, from droplets to liquid film, continuity and inheritance," Energy, Elsevier, vol. 256(C).
    5. Kim, Ah-Reum & Jung, Hye-Mi & Um, Sukkee, 2014. "An engineering approach to optimal metallic bipolar plate designs reflecting gas diffusion layer compression effects," Energy, Elsevier, vol. 66(C), pages 50-55.
    6. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    7. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    8. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    9. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    10. Machado, Bruno S. & Mamlouk, Mohamed & Chakraborty, Nilanjan, 2020. "Entropy generation analysis based on a three-dimensional agglomerate model of an anion exchange membrane fuel cell," Energy, Elsevier, vol. 193(C).
    11. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Rahgoshay, S.M. & Ranjbar, A.A. & Ramiar, A. & Alizadeh, E., 2017. "Thermal investigation of a PEM fuel cell with cooling flow field," Energy, Elsevier, vol. 134(C), pages 61-73.
    13. Natalya Kizilova & Akash Shankar & Signe Kjelstrup, 2024. "A Minimum Entropy Production Approach to Optimization of Tubular Chemical Reactors with Nature-Inspired Design," Energies, MDPI, vol. 17(2), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34368-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.