IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26382-w.html
   My bibliography  Save this article

Compound jetting from bubble bursting at an air-oil-water interface

Author

Listed:
  • Bingqiang Ji

    (University of Illinois at Urbana-Champaign)

  • Zhengyu Yang

    (University of Illinois at Urbana-Champaign)

  • Jie Feng

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Bursting of bubbles at a liquid surface is ubiquitous in a wide range of physical, biological, and geological phenomena, as a key source of aerosol droplets for mass transport across the interface. However, how a structurally complex interface, widely present in nature, mediates the bursting process remains largely unknown. Here, we document the bubble-bursting jet dynamics at an oil-covered aqueous surface, which typifies the sea surface microlayer as well as an oil spill on the ocean. The jet tip radius and velocity are altered with even a thin oil layer, and oily aerosol droplets are produced. We provide evidence that the coupling of oil spreading and cavity collapse dynamics results in a multi-phase jet and the follow-up droplet size change. The oil spreading influences the effective viscous damping, and scaling laws are proposed to quantify the jetting dynamics. Our study not only advances the fundamental understanding of bubble bursting dynamics, but also may shed light on the airborne transmission of organic matters in nature related to aerosol production.

Suggested Citation

  • Bingqiang Ji & Zhengyu Yang & Jie Feng, 2021. "Compound jetting from bubble bursting at an air-oil-water interface," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26382-w
    DOI: 10.1038/s41467-021-26382-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26382-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26382-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Wodlei & J. Sebilleau & J. Magnaudet & V. Pimienta, 2018. "Marangoni-driven flower-like patterning of an evaporating drop spreading on a liquid substrate," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhang Dai & Minfei Li & Bingqiang Ji & Xiong Wang & Siyan Yang & Peng Yu & Steven Wang & Chonglei Hao & Zuankai Wang, 2023. "Liquid metal droplets bouncing higher on thicker water layer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bo & Zhang, Yuhang & Dai, Zhaofeng & Wang, Chen & Zhang, Xiaosong, 2022. "Experimental research on the dynamics of a train of droplets impacting, from droplets to liquid film, continuity and inheritance," Energy, Elsevier, vol. 256(C).
    2. Yang Xiao & Neil M. Ribe & Yage Zhang & Yi Pan & Yang Cao & Ho Cheung Shum, 2022. "Generation of Fermat’s spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26382-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.