IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39348-x.html
   My bibliography  Save this article

Liquid metal droplets bouncing higher on thicker water layer

Author

Listed:
  • Yuhang Dai

    (City University of Hong Kong
    Southern University of Science and Technology)

  • Minfei Li

    (City University of Hong Kong)

  • Bingqiang Ji

    (City University of Hong Kong)

  • Xiong Wang

    (City University of Hong Kong)

  • Siyan Yang

    (City University of Hong Kong)

  • Peng Yu

    (Southern University of Science and Technology)

  • Steven Wang

    (City University of Hong Kong)

  • Chonglei Hao

    (Harbin Institute of Technology)

  • Zuankai Wang

    (City University of Hong Kong
    Hong Kong Polytechnic University)

Abstract

Liquid metal (LM) has gained increasing attention for a wide range of applications, such as flexible electronics, soft robots, and chip cooling devices, owing to its low melting temperature, good flexibility, and high electrical and thermal conductivity. In ambient conditions, LM is susceptible to the coverage of a thin oxide layer, resulting in unwanted adhesion with underlying substrates that undercuts its originally high mobility. Here, we discover an unusual phenomenon characterized by the complete rebound of LM droplets from the water layer with negligible adhesion. More counterintuitively, the restitution coefficient, defined as the ratio between the droplet velocities after and before impact, increases with water layer thickness. We reveal that the complete rebound of LM droplets originates from the trapping of a thinly low-viscosity water lubrication film that prevents droplet-solid contact with low viscous dissipation, and the restitution coefficient is modulated by the negative capillary pressure in the lubrication film as a result of the spontaneous spreading of water on the LM droplet. Our findings advance the fundamental understanding of complex fluids’ droplet dynamics and provide insights for fluid control.

Suggested Citation

  • Yuhang Dai & Minfei Li & Bingqiang Ji & Xiong Wang & Siyan Yang & Peng Yu & Steven Wang & Chonglei Hao & Zuankai Wang, 2023. "Liquid metal droplets bouncing higher on thicker water layer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39348-x
    DOI: 10.1038/s41467-023-39348-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39348-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39348-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Denis Richard & Christophe Clanet & David Quéré, 2002. "Contact time of a bouncing drop," Nature, Nature, vol. 417(6891), pages 811-811, June.
    2. Thomas M. Schutzius & Stefan Jung & Tanmoy Maitra & Gustav Graeber & Moritz Köhme & Dimos Poulikakos, 2015. "Spontaneous droplet trampolining on rigid superhydrophobic surfaces," Nature, Nature, vol. 527(7576), pages 82-85, November.
    3. Chonglei Hao & Jing Li & Yuan Liu & Xiaofeng Zhou & Yahua Liu & Rong Liu & Lufeng Che & Wenzhong Zhou & Dong Sun & Lawrence Li & Lei Xu & Zuankai Wang, 2015. "Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    4. Bingqiang Ji & Zhengyu Yang & Jie Feng, 2021. "Compound jetting from bubble bursting at an air-oil-water interface," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Elliot W. Hawkes & Charles Xiao & Richard-Alexandre Peloquin & Christopher Keeley & Matthew R. Begley & Morgan T. Pope & Günter Niemeyer, 2022. "Engineered jumpers overcome biological limits via work multiplication," Nature, Nature, vol. 604(7907), pages 657-661, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Zhao & Huizeng Li & An Li & Wei Fang & Zheren Cai & Mingzhu Li & Xiqiao Feng & Yanlin Song, 2021. "Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. An Li & Huizeng Li & Sijia Lyu & Zhipeng Zhao & Luanluan Xue & Zheng Li & Kaixuan Li & Mingzhu Li & Chao Sun & Yanlin Song, 2023. "Tailoring vapor film beneath a Leidenfrost drop," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Ying Zhou & Chenguang Zhang & Wenchang Zhao & Shiyu Wang & Pingan Zhu, 2023. "Suppression of hollow droplet rebound on super-repellent surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Cong Liu & Chenguang Lu & Zichao Yuan & Cunjing Lv & Yahua Liu, 2022. "Steerable drops on heated concentric microgroove arrays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Jiawei Jiang & Yizhou Shen & Yangjiangshan Xu & Zhen Wang & Jie Tao & Senyun Liu & Weilan Liu & Haifeng Chen, 2024. "An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Minseok Gwon & Dongjin Kim & Baekgyeom Kim & Seungyong Han & Daeshik Kang & Je-Sung Koh, 2023. "Scale dependence in hydrodynamic regime for jumping on water," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Guoying Bai & Haiyan Zhang & Dong Gao & Houguo Fei & Cunlan Guo & Mingxia Ren & Yufeng Liu, 2024. "Controlled condensation by liquid contact-induced adaptations of molecular conformations in self-assembled monolayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Man Hu & Feng Wang & Li Chen & Peng Huo & Yuqi Li & Xi Gu & Kai Leong Chong & Daosheng Deng, 2022. "Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    12. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Wancheng Gu & Wanbo Li & Yu Zhang & Yage Xia & Qiaoling Wang & Wei Wang & Ping Liu & Xinquan Yu & Hui He & Caihua Liang & Youxue Ban & Changwen Mi & Sha Yang & Wei Liu & Miaomiao Cui & Xu Deng & Zuank, 2023. "Ultra-durable superhydrophobic cellular coatings," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39348-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.