IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019591.html
   My bibliography  Save this article

Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell

Author

Listed:
  • Zhu, Kai-Qi
  • Ding, Quan
  • Zhang, Ben-Xi
  • Xu, Jiang-Hai
  • Li, Dan-Dan
  • Yang, Yan-Ru
  • Lee, Duu-Jong
  • Wan, Zhong-Min
  • Wang, Xiao-Dong

Abstract

In this study, a novel cathode flow field plate with additional tapered oblique fin (OF) channels is proposed for air-cooled proton exchange membrane fuel cells (PEMFCs) to promote their heat dissipation and output power. Air-cooled PEMFC stacks with conventional (parallel configuration) and novel flow fields are respectively manufactured and experimentally tested under various load currents. The performance and temperature distributions of the stacks are comparatively studied in detail. Besides, a three-dimensional and two-phase numerical model is established and validated by the experiment data to further comparative investigate the heat and mass transport mechanism of the two studied flow field designs. The results show that the stack with the novel flow field has higher output power, which is 4.87% higher than that with a conventional design at a load current density of 0.55 A cm−2. Due to the forced convection and secondary vortex phenomena in the OF channels, the local overheating in the porous electrode is relieved. Moreover, the entropy generations due to heat transfer of the cathode CL and cooling channels are significantly increased. The oxygen transport under cathode ribs is also noteworthily enhanced when the OF channels are adopted.

Suggested Citation

  • Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019591
    DOI: 10.1016/j.apenergy.2023.122595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.