IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32892-y.html
   My bibliography  Save this article

Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces

Author

Listed:
  • Minghui Tan

    (Beijing University of Chemical Technology)

  • Pan Tian

    (Beijing University of Chemical Technology)

  • Qian Zhang

    (Beijing University of Chemical Technology)

  • Guiqiang Zhu

    (Beijing University of Chemical Technology)

  • Yuchen Liu

    (Beijing University of Chemical Technology)

  • Mengjiao Cheng

    (Beijing University of Chemical Technology
    Beijing University of Chemical Technology
    Beijing University of Chemical Technology)

  • Feng Shi

    (Beijing University of Chemical Technology
    Beijing University of Chemical Technology
    Beijing University of Chemical Technology)

Abstract

Supramolecular self-assembly of μm-to-mm sized components is essential to construct complex supramolecular systems. However, the selective assembly to form designated structures at this length scale is challenging because the short-ranged molecular recognition could hardly direct the assembly of macroscopic components. Here we demonstrate a self-sorting mechanism to automatically identify the surface chemistry of μm-to-mm components (A: polycations; B: polyanions) based on the A-B attraction and the A-A repulsion, which is realized by the additivity and the competence between long-ranged magnetic/capillary forces, respectively. Mechanistic studies of the correlation between the magnetic/capillary forces and the interactive distance have revealed the energy landscape of each assembly pattern to support the self-sorting results. By applying this mechanism, the assembly yield of ABA trimers has been increased from 30%~40% under conventional conditions to 100% with self-sorting. Moreover, we have demonstrated rapid and spontaneous self-assembly of advanced chain-like structures with alternate surface chemistry.

Suggested Citation

  • Minghui Tan & Pan Tian & Qian Zhang & Guiqiang Zhu & Yuchen Liu & Mengjiao Cheng & Feng Shi, 2022. "Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32892-y
    DOI: 10.1038/s41467-022-32892-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32892-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32892-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Santos & Paul A. Gabrys & Leonardo Z. Zornberg & Margaret S. Lee & Robert J. Macfarlane, 2021. "Macroscopic materials assembled from nanoparticle superlattices," Nature, Nature, vol. 591(7851), pages 586-591, March.
    2. Takehiro Hirao & Hiroaki Kudo & Tomoko Amimoto & Takeharu Haino, 2017. "Sequence-controlled supramolecular terpolymerization directed by specific molecular recognitions," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    3. Shuai Zhang & Robert G. Alberstein & James J. Yoreo & F. Akif Tezcan, 2020. "Assembly of a patchy protein into variable 2D lattices via tunable multiscale interactions," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Hao Qi & Majid Ghodousi & Yanan Du & Casey Grun & Hojae Bae & Peng Yin & Ali Khademhosseini, 2013. "DNA-directed self-assembly of shape-controlled hydrogels," Nature Communications, Nature, vol. 4(1), pages 1-10, October.
    5. Corentin Coulais & Eial Teomy & Koen de Reus & Yair Shokef & Martin van Hecke, 2016. "Combinatorial design of textured mechanical metamaterials," Nature, Nature, vol. 535(7613), pages 529-532, July.
    6. Marc Z. Miskin & Alejandro J. Cortese & Kyle Dorsey & Edward P. Esposito & Michael F. Reynolds & Qingkun Liu & Michael Cao & David A. Muller & Paul L. McEuen & Itai Cohen, 2020. "Electronically integrated, mass-manufactured, microscopic robots," Nature, Nature, vol. 584(7822), pages 557-561, August.
    7. Zhiming Hu & Wei Fang & Qunyang Li & Xi-Qiao Feng & Jiu-an Lv, 2020. "Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Liang Yue & Shan Wang & Ding Zhou & Hao Zhang & Bao Li & Lixin Wu, 2016. "Flexible single-layer ionic organic–inorganic frameworks towards precise nano-size separation," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    9. Robert W. Harkness V & Nicole Avakyan & Hanadi F. Sleiman & Anthony K. Mittermaier, 2018. "Mapping the energy landscapes of supramolecular assembly by thermal hysteresis," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minghao Wang & Chen Nie & Junbang Liu & Si Wu, 2023. "Organic‒inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jinhao Zhang & Mi Xiao & Liang Gao & Andrea Alù & Fengwen Wang, 2023. "Self-bridging metamaterials surpassing the theoretical limit of Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Yufei Wang & Yilong Zhou & Quanpeng Yang & Rourav Basak & Yu Xie & Dong Le & Alexander D. Fuqua & Wade Shipley & Zachary Yam & Alex Frano & Gaurav Arya & Andrea R. Tao, 2024. "Self-assembly of nanocrystal checkerboard patterns via non-specific interactions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Alexander Hensley & Thomas E. Videbæk & Hunter Seyforth & William M. Jacobs & W. Benjamin Rogers, 2023. "Macroscopic photonic single crystals via seeded growth of DNA-coated colloids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yangyang Chen & Xiaopeng Li & Colin Scheibner & Vincenzo Vitelli & Guoliang Huang, 2021. "Realization of active metamaterials with odd micropolar elasticity," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Guohua Zhang & Xinyue Li & Gang Chen & Yue Zhang & Mingfeng Wei & Xiaofei Chen & Bao Li & Yuqing Wu & Lixin Wu, 2023. "Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Jiang Yan & Ying Zhang & Zongguang Liu & Junzhuan Wang & Jun Xu & Linwei Yu, 2023. "Ultracompact single-nanowire-morphed grippers driven by vectorial Lorentz forces for dexterous robotic manipulations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Bowen Sui & Youliang Zhu & Xuemei Jiang & Yifan Wang & Niboqia Zhang & Zhongyuan Lu & Bai Yang & Yunfeng Li, 2023. "Recastable assemblies of carbon dots into mechanically robust macroscopic materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Nguyen, Minh D.N. & Pham, Phuc H. & Ngo, Khang V. & Do, Van H. & Li, Shengkai & Phan, Trung V., 2024. "Remark on the entropy production of adaptive run-and-tumble chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    14. Mingchao Zhang & Yohan Lee & Zhiqiang Zheng & Muhammad Turab Ali Khan & Xianglong Lyu & Junghwan Byun & Harald Giessen & Metin Sitti, 2023. "Micro- and nanofabrication of dynamic hydrogels with multichannel information," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Jing Fan Yang & Thomas A. Berrueta & Allan M. Brooks & Albert Tianxiang Liu & Ge Zhang & David Gonzalez-Medrano & Sungyun Yang & Volodymyr B. Koman & Pavel Chvykov & Lexy N. LeMar & Marc Z. Miskin & T, 2022. "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32892-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.