IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7851d10.1038_s41586-021-03355-z.html
   My bibliography  Save this article

Macroscopic materials assembled from nanoparticle superlattices

Author

Listed:
  • Peter J. Santos

    (Massachusetts Institute of Technology)

  • Paul A. Gabrys

    (Massachusetts Institute of Technology)

  • Leonardo Z. Zornberg

    (Massachusetts Institute of Technology)

  • Margaret S. Lee

    (Massachusetts Institute of Technology)

  • Robert J. Macfarlane

    (Massachusetts Institute of Technology)

Abstract

Nanoparticle assembly has been proposed as an ideal means to program the hierarchical organization of a material by using a selection of nanoscale components to build the entire material from the bottom up. Multiscale structural control is highly desirable because chemical composition, nanoscale ordering, microstructure and macroscopic form all affect physical properties1,2. However, the chemical interactions that typically dictate nanoparticle ordering3–5 do not inherently provide any means to manipulate structure at larger length scales6–9. Nanoparticle-based materials development therefore requires processing strategies to tailor micro- and macrostructure without sacrificing their self-assembled nanoscale arrangements. Here we demonstrate methods to rapidly assemble gram-scale quantities of faceted nanoparticle superlattice crystallites that can be further shaped into macroscopic objects in a manner analogous to the sintering of bulk solids. The key advance of this method is that the chemical interactions that govern nanoparticle assembly remain active during the subsequent processing steps, which enables the local nanoscale ordering of the particles to be preserved as the macroscopic materials are formed. The nano- and microstructure of the bulk solids can be tuned as a function of the size, chemical makeup and crystallographic symmetry of the superlattice crystallites, and the micro- and macrostructures can be controlled via subsequent processing steps. This work therefore provides a versatile method to simultaneously control structural organization across the molecular to macroscopic length scales.

Suggested Citation

  • Peter J. Santos & Paul A. Gabrys & Leonardo Z. Zornberg & Margaret S. Lee & Robert J. Macfarlane, 2021. "Macroscopic materials assembled from nanoparticle superlattices," Nature, Nature, vol. 591(7851), pages 586-591, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7851:d:10.1038_s41586-021-03355-z
    DOI: 10.1038/s41586-021-03355-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03355-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03355-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Bowen Sui & Youliang Zhu & Xuemei Jiang & Yifan Wang & Niboqia Zhang & Zhongyuan Lu & Bai Yang & Yunfeng Li, 2023. "Recastable assemblies of carbon dots into mechanically robust macroscopic materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Alexander Hensley & Thomas E. Videbæk & Hunter Seyforth & William M. Jacobs & W. Benjamin Rogers, 2023. "Macroscopic photonic single crystals via seeded growth of DNA-coated colloids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Minghui Tan & Pan Tian & Qian Zhang & Guiqiang Zhu & Yuchen Liu & Mengjiao Cheng & Feng Shi, 2022. "Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7851:d:10.1038_s41586-021-03355-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.