IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33638-6.html
   My bibliography  Save this article

Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding

Author

Listed:
  • Zhiwei Yang

    (Shandong University)

  • Yanze Wei

    (Shandong University)

  • Jingjing Wei

    (Shandong University)

  • Zhijie Yang

    (Shandong University)

Abstract

The development of mechanochemistry substantially expands the traditional synthetic realm at the molecular level. Here, we extend the concept of mechanochemistry from atomic/molecular solids to the nanoparticle solids, and show how the macroscopic grinding is being capable of generating chirality in self-assembled nanorod (NR) assemblies. Specifically, the weak van der Waals interaction is dominated in self-assembled NR assemblies when their surface is coated with aliphatic chains, which can be overwhelmed by a press-and-rotate mechanic force macroscopically. The chiral sign of the NR assemblies can be well-controlled by the rotating directions, where the clockwise and counter-clockwise rotation leads to the positive and negative Cotton effect in circular dichroism and circularly polarized luminescence spectra, respectively. Importantly, we show that the present approach can be applied to NRs of diverse inorganic materials, including CdSe, CdSe/CdS, and TiO2. Equally important, the as-prepared chiral NR assemblies could be served as porous yet robust chiral substrates, which enable to host other molecular materials and induce the chirality transfer from substrate to the molecular system.

Suggested Citation

  • Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33638-6
    DOI: 10.1038/s41467-022-33638-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33638-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33638-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriele Rainò & Michael A. Becker & Maryna I. Bodnarchuk & Rainer F. Mahrt & Maksym V. Kovalenko & Thilo Stöferle, 2018. "Superfluorescence from lead halide perovskite quantum dot superlattices," Nature, Nature, vol. 563(7733), pages 671-675, November.
    2. Peter J. Santos & Paul A. Gabrys & Leonardo Z. Zornberg & Margaret S. Lee & Robert J. Macfarlane, 2021. "Macroscopic materials assembled from nanoparticle superlattices," Nature, Nature, vol. 591(7851), pages 586-591, March.
    3. Anton Kuzyk & Robert Schreiber & Zhiyuan Fan & Günther Pardatscher & Eva-Maria Roller & Alexander Högele & Friedrich C. Simmel & Alexander O. Govorov & Tim Liedl, 2012. "DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response," Nature, Nature, vol. 483(7389), pages 311-314, March.
    4. Jiashu Sun & Yike Li & Fusheng Yan & Chao Liu & Yutao Sang & Fei Tian & Qiang Feng & Pengfei Duan & Li Zhang & Xinghua Shi & Baoquan Ding & Minghua Liu, 2018. "Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. Liguang Xu & Xiuxiu Wang & Weiwei Wang & Maozhong Sun & Won Jin Choi & Ji-Young Kim & Changlong Hao & Si Li & Aihua Qu & Meiru Lu & Xiaoling Wu & Felippe M. Colombari & Weverson R. Gomes & Asdrubal L., 2022. "Enantiomer-dependent immunological response to chiral nanoparticles," Nature, Nature, vol. 601(7893), pages 366-373, January.
    6. Yujia Liang & Yong Xie & Dongxue Chen & Chuanfei Guo & Shuai Hou & Tao Wen & Fengyou Yang & Ke Deng & Xiaochun Wu & Ivan I. Smalyukh & Qian Liu, 2017. "Symmetry control of nanorod superlattice driven by a governing force," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    7. Wei Ma & Hua Kuang & Liguang Xu & Li Ding & Chuanlai Xu & Libing Wang & Nicholas A. Kotov, 2013. "Attomolar DNA detection with chiral nanorod assemblies," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Zhiyuan Ding & Si Gao & Weina Fang & Chen Huang & Liqi Zhou & Xudong Pei & Xiaoguo Liu & Xiaoqing Pan & Chunhai Fan & Angus I. Kirkland & Peng Wang, 2022. "Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Semih Sevim & Alessandro Sorrenti & João Pedro Vale & Zoubir El-Hachemi & Salvador Pané & Andreas D. Flouris & Tiago Sotto Mayor & Josep Puigmartí-Luis, 2022. "Chirality transfer from a 3D macro shape to the molecular level by controlling asymmetric secondary flows," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Si Li & Xinxin Xu & Liguang Xu & Hengwei Lin & Hua Kuang & Chuanlai Xu, 2024. "Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Alexander Hensley & Thomas E. Videbæk & Hunter Seyforth & William M. Jacobs & W. Benjamin Rogers, 2023. "Macroscopic photonic single crystals via seeded growth of DNA-coated colloids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Tianran Zhang & Dengping Lyu & Wei Xu & Xuan Feng & Ran Ni & Yufeng Wang, 2023. "Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Xiaolin Lu & Xujie Wang & Shuangshuang Wang & Tao Ding, 2023. "Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Jing Ai & Xueliang Zhang & Te Bai & Qing Shen & Peter Oleynikov & Yingying Duan & Osamu Terasaki & Shunai Che & Lu Han, 2022. "Synchronous quantitative analysis of chiral mesostructured inorganic crystals by 3D electron diffraction tomography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Minghui Tan & Pan Tian & Qian Zhang & Guiqiang Zhu & Yuchen Liu & Mengjiao Cheng & Feng Shi, 2022. "Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Jeroen F. Dyck & Jonathan R. Burns & Kyle I. P. Huray & Albert Konijnenberg & Stefan Howorka & Frank Sobott, 2022. "Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Bowen Sui & Youliang Zhu & Xuemei Jiang & Yifan Wang & Niboqia Zhang & Zhongyuan Lu & Bai Yang & Yunfeng Li, 2023. "Recastable assemblies of carbon dots into mechanically robust macroscopic materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Nam Heon Cho & Young Bi Kim & Yoon Young Lee & Sang Won Im & Ryeong Myeong Kim & Jeong Won Kim & Seok Daniel Namgung & Hye-Eun Lee & Hyeohn Kim & Jeong Hyun Han & Hye Won Chung & Yoon Ho Lee & Jeong W, 2022. "Adenine oligomer directed synthesis of chiral gold nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Jiapeng Zheng & Christina Boukouvala & George R. Lewis & Yicong Ma & Yang Chen & Emilie Ringe & Lei Shao & Zhifeng Huang & Jianfang Wang, 2023. "Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Muhammad Yaseen & Muhammad Humayun & Abbas Khan & Muhammad Usman & Habib Ullah & Asif Ali Tahir & Habib Ullah, 2021. "Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review," Energies, MDPI, vol. 14(5), pages 1-88, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33638-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.