IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39792-9.html
   My bibliography  Save this article

Self-bridging metamaterials surpassing the theoretical limit of Poisson’s ratios

Author

Listed:
  • Jinhao Zhang

    (Huazhong University of Science and Technology)

  • Mi Xiao

    (Huazhong University of Science and Technology)

  • Liang Gao

    (Huazhong University of Science and Technology)

  • Andrea Alù

    (City University of New York)

  • Fengwen Wang

    (Technical University of Denmark, Koppels Allé)

Abstract

A hallmark of mechanical metamaterials has been the realization of negative Poisson’s ratios, associated with auxeticity. However, natural and engineered Poisson’s ratios obey fundamental bounds determined by stability, linearity and thermodynamics. Overcoming these limits may substantially extend the range of Poisson’s ratios realizable in mechanical systems, of great interest for medical stents and soft robots. Here, we demonstrate freeform self-bridging metamaterials that synthesize multi-mode microscale levers, realizing Poisson’s ratios surpassing the values allowed by thermodynamics in linear materials. Bridging slits between microstructures via self-contacts yields multiple rotation behaviors of microscale levers, which break the symmetry and invariance of the constitutive tensors under different load scenarios, enabling inaccessible deformation patterns. Based on these features, we unveil a bulk mode that breaks static reciprocity, providing an explicit and programmable way to manipulate the non-reciprocal transmission of displacement fields in static mechanics. Besides non-reciprocal Poisson’s ratios, we also realize ultra-large and step-like values, which make metamaterials exhibit orthogonally bidirectional displacement amplification, and expansion under both tension and compression, respectively.

Suggested Citation

  • Jinhao Zhang & Mi Xiao & Liang Gao & Andrea Alù & Fengwen Wang, 2023. "Self-bridging metamaterials surpassing the theoretical limit of Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39792-9
    DOI: 10.1038/s41467-023-39792-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39792-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39792-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niels Aage & Erik Andreassen & Boyan S. Lazarov & Ole Sigmund, 2017. "Giga-voxel computational morphogenesis for structural design," Nature, Nature, vol. 550(7674), pages 84-86, October.
    2. Amin Farzaneh & Nikhil Pawar & Carlos M. Portela & Jonathan B. Hopkins, 2022. "Sequential metamaterials with alternating Poisson’s ratios," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Corentin Coulais & Dimitrios Sounas & Andrea Alù, 2017. "Static non-reciprocity in mechanical metamaterials," Nature, Nature, vol. 542(7642), pages 461-464, February.
    4. Corentin Coulais & Eial Teomy & Koen de Reus & Yair Shokef & Martin van Hecke, 2016. "Combinatorial design of textured mechanical metamaterials," Nature, Nature, vol. 535(7613), pages 529-532, July.
    5. Wei Sha & Mi Xiao & Jinhao Zhang & Xuecheng Ren & Zhan Zhu & Yan Zhang & Guoqiang Xu & Huagen Li & Xiliang Liu & Xia Chen & Liang Gao & Cheng-Wei Qiu & Run Hu, 2021. "Robustly printable freeform thermal metamaterials," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. R. S. Lakes & T. Lee & A. Bersie & Y. C. Wang, 2001. "Extreme damping in composite materials with negative-stiffness inclusions," Nature, Nature, vol. 410(6828), pages 565-567, March.
    7. Corentin Coulais & Alberico Sabbadini & Fré Vink & Martin Hecke, 2018. "Multi-step self-guided pathways for shape-changing metamaterials," Nature, Nature, vol. 561(7724), pages 512-515, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou Hu & Zhibo Wei & Kun Wang & Yan Chen & Rui Zhu & Guoliang Huang & Gengkai Hu, 2023. "Engineering zero modes in transformable mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Thomas Fromenteze & Okan Yurduseven & Chidinma Uche & Eric Arnaud & David R. Smith & Cyril Decroze, 2023. "Morphogenetic metasurfaces: unlocking the potential of turing patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Aditya Ghantasala & Reza Najian Asl & Armin Geiser & Andrew Brodie & Efthymios Papoutsis & Kai-Uwe Bletzinger, 2021. "Realization of a Framework for Simulation-Based Large-Scale Shape Optimization Using Vertex Morphing," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 164-189, April.
    5. Reis, Eduardo V.M. & Savi, Marcelo A., 2022. "Spatiotemporal chaos in a conservative Duffing-type system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Haitao Ye & Qingjiang Liu & Jianxiang Cheng & Honggeng Li & Bingcong Jian & Rong Wang & Zechu Sun & Yang Lu & Qi Ge, 2023. "Multimaterial 3D printed self-locking thick-panel origami metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Marcus Albrechtsen & Babak Vosoughi Lahijani & Rasmus Ellebæk Christiansen & Vy Thi Hoang Nguyen & Laura Nevenka Casses & Søren Engelberth Hansen & Nicolas Stenger & Ole Sigmund & Henri Jansen & Jespe, 2022. "Nanometer-scale photon confinement in topology-optimized dielectric cavities," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Lianchao Wang & Julio A. Iglesias Martínez & Gwenn Ulliac & Bing Wang & Vincent Laude & Muamer Kadic, 2023. "Non-reciprocal and non-Newtonian mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Yangyang Chen & Xiaopeng Li & Colin Scheibner & Vincenzo Vitelli & Guoliang Huang, 2021. "Realization of active metamaterials with odd micropolar elasticity," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Yun-Fei Fu & Kai Long & Bernard Rolfe, 2023. "On Non-Penalization SEMDOT Using Discrete Variable Sensitivities," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 644-677, August.
    12. Amin Farzaneh & Nikhil Pawar & Carlos M. Portela & Jonathan B. Hopkins, 2022. "Sequential metamaterials with alternating Poisson’s ratios," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Yuying Chen & Jing Li & Shaotao Zhu & Hongzhen Zhao, 2023. "Further Optimization of Maxwell-Type Dynamic Vibration Absorber with Inerter and Negative Stiffness Spring Using Particle Swarm Algorithm," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    14. M. J. Bereyhi & A. Beccari & R. Groth & S. A. Fedorov & A. Arabmoheghi & T. J. Kippenberg & N. J. Engelsen, 2022. "Hierarchical tensile structures with ultralow mechanical dissipation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Minghui Tan & Pan Tian & Qian Zhang & Guiqiang Zhu & Yuchen Liu & Mengjiao Cheng & Feng Shi, 2022. "Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Lazarov, Boyan S. & Sigmund, Ole & Meyer, Knud E. & Alexandersen, Joe, 2018. "Experimental validation of additively manufactured optimized shapes for passive cooling," Applied Energy, Elsevier, vol. 226(C), pages 330-339.
    17. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 341-373, February.
    18. Kaminski, Meghan & Loth, Eric & Griffith, D. Todd & Qin, Chao (Chris), 2020. "Ground testing of a 1% gravo-aeroelastically scaled additively-manufactured wind turbine blade with bio-inspired structural design," Renewable Energy, Elsevier, vol. 148(C), pages 639-650.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39792-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.