IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30586-z.html
   My bibliography  Save this article

Hierarchical tensile structures with ultralow mechanical dissipation

Author

Listed:
  • M. J. Bereyhi

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • A. Beccari

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • R. Groth

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • S. A. Fedorov

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • A. Arabmoheghi

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • T. J. Kippenberg

    (Swiss Federal Institute of Technology Lausanne (EPFL))

  • N. J. Engelsen

    (Swiss Federal Institute of Technology Lausanne (EPFL))

Abstract

Structural hierarchy is found in myriad biological systems and has improved man-made structures ranging from the Eiffel tower to optical cavities. In mechanical resonators whose rigidity is provided by static tension, structural hierarchy can reduce the dissipation of the fundamental mode to ultralow levels due to an unconventional form of soft clamping. Here, we apply hierarchical design to silicon nitride nanomechanical resonators and realize binary tree-shaped resonators with room temperature quality factors as high as 7.8 × 108 at 107 kHz frequency (1.1 × 109 at T = 6 K). The resonators’ thermal-noise-limited force sensitivities reach 740 zN/Hz1/2 at room temperature and 90 zN/Hz1/2 at 6 K, surpassing state-of-the-art cantilevers currently used for force microscopy. Moreover, we demonstrate hierarchically structured, ultralow dissipation membranes suitable for interferometric position measurements in Fabry-Pérot cavities. Hierarchical nanomechanical resonators open new avenues in force sensing, signal transduction and quantum optomechanics, where low dissipation is paramount and operation with the fundamental mode is often advantageous.

Suggested Citation

  • M. J. Bereyhi & A. Beccari & R. Groth & S. A. Fedorov & A. Arabmoheghi & T. J. Kippenberg & N. J. Engelsen, 2022. "Hierarchical tensile structures with ultralow mechanical dissipation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30586-z
    DOI: 10.1038/s41467-022-30586-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30586-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30586-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niels Aage & Erik Andreassen & Boyan S. Lazarov & Ole Sigmund, 2017. "Giga-voxel computational morphogenesis for structural design," Nature, Nature, vol. 550(7674), pages 84-86, October.
    2. Massimiliano Rossi & David Mason & Junxin Chen & Yeghishe Tsaturyan & Albert Schliesser, 2018. "Measurement-based quantum control of mechanical motion," Nature, Nature, vol. 563(7729), pages 53-58, November.
    3. D. J. Wilson & V. Sudhir & N. Piro & R. Schilling & A. Ghadimi & T. J. Kippenberg, 2015. "Measurement-based control of a mechanical oscillator at its thermal decoherence rate," Nature, Nature, vol. 524(7565), pages 325-329, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Jinhao Zhang & Mi Xiao & Liang Gao & Andrea Alù & Fengwen Wang, 2023. "Self-bridging metamaterials surpassing the theoretical limit of Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Thomas Fromenteze & Okan Yurduseven & Chidinma Uche & Eric Arnaud & David R. Smith & Cyril Decroze, 2023. "Morphogenetic metasurfaces: unlocking the potential of Turing patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Aditya Ghantasala & Reza Najian Asl & Armin Geiser & Andrew Brodie & Efthymios Papoutsis & Kai-Uwe Bletzinger, 2021. "Realization of a Framework for Simulation-Based Large-Scale Shape Optimization Using Vertex Morphing," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 164-189, April.
    7. Marcus Albrechtsen & Babak Vosoughi Lahijani & Rasmus Ellebæk Christiansen & Vy Thi Hoang Nguyen & Laura Nevenka Casses & Søren Engelberth Hansen & Nicolas Stenger & Ole Sigmund & Henri Jansen & Jespe, 2022. "Nanometer-scale photon confinement in topology-optimized dielectric cavities," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yun-Fei Fu & Kai Long & Bernard Rolfe, 2023. "On Non-Penalization SEMDOT Using Discrete Variable Sensitivities," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 644-677, August.
    9. Peipei Pan & Aixi Chen & Li Deng, 2023. "Improving Mechanical Oscillator Cooling in a Double-Coupled Cavity Optomechanical System with an Optical Parametric Amplifier," Mathematics, MDPI, vol. 11(9), pages 1-12, May.
    10. Antti Vepsäläinen & Roni Winik & Amir H. Karamlou & Jochen Braumüller & Agustin Di Paolo & Youngkyu Sung & Bharath Kannan & Morten Kjaergaard & David K. Kim & Alexander J. Melville & Bethany M. Niedzi, 2022. "Improving qubit coherence using closed-loop feedback," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Hengjiang Ren & Tirth Shah & Hannes Pfeifer & Christian Brendel & Vittorio Peano & Florian Marquardt & Oskar Painter, 2022. "Topological phonon transport in an optomechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Lazarov, Boyan S. & Sigmund, Ole & Meyer, Knud E. & Alexandersen, Joe, 2018. "Experimental validation of additively manufactured optimized shapes for passive cooling," Applied Energy, Elsevier, vol. 226(C), pages 330-339.
    13. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 341-373, February.
    14. Stefano Stassi & Ido Cooperstein & Mauro Tortello & Candido Fabrizio Pirri & Shlomo Magdassi & Carlo Ricciardi, 2021. "Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Kaminski, Meghan & Loth, Eric & Griffith, D. Todd & Qin, Chao (Chris), 2020. "Ground testing of a 1% gravo-aeroelastically scaled additively-manufactured wind turbine blade with bio-inspired structural design," Renewable Energy, Elsevier, vol. 148(C), pages 639-650.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30586-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.