IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7724d10.1038_s41586-018-0541-0.html
   My bibliography  Save this article

Multi-step self-guided pathways for shape-changing metamaterials

Author

Listed:
  • Corentin Coulais

    (AMOLF
    Universiteit Leiden
    Universiteit van Amsterdam)

  • Alberico Sabbadini

    (Universiteit Leiden)

  • Fré Vink

    (Universiteit Leiden)

  • Martin Hecke

    (AMOLF
    Universiteit Leiden)

Abstract

Multi-step pathways—which consist of a sequence of reconfigurations of a structure—are central to the functionality of various natural and artificial systems. Such pathways execute autonomously in self-guided processes such as protein folding1 and self-assembly2–5, but have previously required external control to execute in macroscale mechanical systems, provided by, for example, actuators in robotics6–9 or manual folding in origami8,10–12. Here we demonstrate shape-changing, macroscale mechanical metamaterials that undergo self-guided, multi-step reconfiguration in response to global uniform compression. We avoid the need for external control by using metamaterials that are made purely of passive components. The design of the metamaterials combines nonlinear mechanical elements with a multimodal architecture that enables a sequence of topological reconfigurations caused by the formation of internal self-contacts between the elements of the metamaterial. We realize the metamaterials by using computer-controlled water-jet cutting of flexible materials, and show that the multi-step pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We also demonstrate that the self-contacts suppress errors in the pathway. Finally, we create hierarchical architectures to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening up new avenues for self-folding media11,12, pluripotent materials9,13 and pliable devices14 in areas such as stretchable electronics and soft robotics15.

Suggested Citation

  • Corentin Coulais & Alberico Sabbadini & Fré Vink & Martin Hecke, 2018. "Multi-step self-guided pathways for shape-changing metamaterials," Nature, Nature, vol. 561(7724), pages 512-515, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0541-0
    DOI: 10.1038/s41586-018-0541-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0541-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0541-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhao Zhang & Mi Xiao & Liang Gao & Andrea Alù & Fengwen Wang, 2023. "Self-bridging metamaterials surpassing the theoretical limit of Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Amin Farzaneh & Nikhil Pawar & Carlos M. Portela & Jonathan B. Hopkins, 2022. "Sequential metamaterials with alternating Poisson’s ratios," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Zhou Hu & Zhibo Wei & Kun Wang & Yan Chen & Rui Zhu & Guoliang Huang & Gengkai Hu, 2023. "Engineering zero modes in transformable mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0541-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.