IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31380-7.html
   My bibliography  Save this article

Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests

Author

Listed:
  • Jacob J. Bukoski

    (Conservation International
    University of California)

  • Susan C. Cook-Patton

    (The Nature Conservancy
    Smithsonian Conservation Biology Institute)

  • Cyril Melikov

    (University of California
    Environmental Defense Fund)

  • Hongyi Ban

    (University of California)

  • Jessica L. Chen

    (University of California)

  • Elizabeth D. Goldman

    (World Resources Institute)

  • Nancy L. Harris

    (World Resources Institute)

  • Matthew D. Potts

    (University of California
    Carbon Direct, Inc.)

Abstract

Restoring forest cover is a key action for mitigating climate change. Although monoculture plantations dominate existing commitments to restore forest cover, we lack a synthetic view of how carbon accumulates in these systems. Here, we assemble a global database of 4756 field-plot measurements from monoculture plantations across all forested continents. With these data, we model carbon accumulation in aboveground live tree biomass and examine the biological, environmental, and human drivers that influence this growth. Our results identify four-fold variation in carbon accumulation rates across tree genera, plant functional types, and biomes, as well as the key mediators (e.g., genus of tree, endemism of species, prior land use) of variation in these rates. Our nonlinear growth models advance our understanding of carbon accumulation in forests relative to mean annual rates, particularly during the next few decades that are critical for mitigating climate change.

Suggested Citation

  • Jacob J. Bukoski & Susan C. Cook-Patton & Cyril Melikov & Hongyi Ban & Jessica L. Chen & Elizabeth D. Goldman & Nancy L. Harris & Matthew D. Potts, 2022. "Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31380-7
    DOI: 10.1038/s41467-022-31380-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31380-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31380-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franklin Satterthwaite, 1941. "Synthesis of variance," Psychometrika, Springer;The Psychometric Society, vol. 6(5), pages 309-316, October.
    2. Olschewski, Roland & Benítez, Pablo C., 2010. "Optimizing joint production of timber and carbon sequestration of afforestation projects," Journal of Forest Economics, Elsevier, vol. 16(1), pages 1-10, January.
    3. Susan C. Cook-Patton & Sara M. Leavitt & David Gibbs & Nancy L. Harris & Kristine Lister & Kristina J. Anderson-Teixeira & Russell D. Briggs & Robin L. Chazdon & Thomas W. Crowther & Peter W. Ellis & , 2020. "Mapping carbon accumulation potential from global natural forest regrowth," Nature, Nature, vol. 585(7826), pages 545-550, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    2. Bura, Efstathia & Cook, R. Dennis, 2003. "Rank estimation in reduced-rank regression," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 159-176, October.
    3. Julia Volaufova, 2009. "Heteroscedastic ANOVA: old p values, new views," Statistical Papers, Springer, vol. 50(4), pages 943-962, August.
    4. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    5. Susan C. Cook-Patton & C. Ronnie Drever & Bronson W. Griscom & Kelley Hamrick & Hamilton Hardman & Timm Kroeger & Pablo Pacheco & Shyla Raghav & Martha Stevenson & Chris Webb & Samantha Yeo & Peter W., 2021. "Protect, manage and then restore lands for climate mitigation," Nature Climate Change, Nature, vol. 11(12), pages 1027-1034, December.
    6. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    7. Marc Hallin & Abdessamad Saidi, 2005. "Testing Non‐Correlation and Non‐Causality between Multivariate ARMA Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 83-105, January.
    8. Joseph Fleiss, 1970. "Estimating the reliability of interview data," Psychometrika, Springer;The Psychometric Society, vol. 35(2), pages 143-162, June.
    9. J. Davenport & J. Webster, 1975. "The Behrens-Fisher problem, an old solution revisited," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(1), pages 47-54, December.
    10. Tee, James & Scarpa, Riccardo & Marsh, Dan & Guthrie, Graeme, 2012. "Valuation of Carbon Forestry and the New Zealand Emissions Trading Scheme: A Real Options Approach Using the Binomial Tree Method," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123665, International Association of Agricultural Economists.
    11. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    12. Chiou, Paul, 1997. "Interval estimation of scale parameters following a pre-test for two exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 477-489, February.
    13. Mikkel Helding Vembye & James Eric Pustejovsky & Therese Deocampo Pigott, 2023. "Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 70-102, February.
    14. Marshalek, Elaina C. & Ramage, Benjamin S. & Potts, Matthew D., 2014. "Integrating harvest scheduling and reserve design to improve biodiversity conservation," Ecological Modelling, Elsevier, vol. 287(C), pages 27-35.
    15. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    16. Jing Zhao & Hui Hu & Jinglei Wang, 2022. "Forest Carbon Reserve Calculation and Comprehensive Economic Value Evaluation: A Forest Management Model Based on Both Biomass Expansion Factor Method and Total Forest Value," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    17. repec:mpr:mprres:6510 is not listed on IDEAS
    18. Jacob M. Paul & Martijn Ackooij & Tuomas C. Cate & Ben M. Harvey, 2022. "Numerosity tuning in human association cortices and local image contrast representations in early visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Bentler, Peter M. & Xie, Jun, 2000. "Corrections to test statistics in principal Hessian directions," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 381-389, May.
    20. Price, Colin & Willis, Rob, 2011. "The multiple effects of carbon values on optimal rotation," Journal of Forest Economics, Elsevier, vol. 17(3), pages 298-306, August.
    21. Indrajaya, Yonky & van der Werf, Edwin & Weikard, Hans-Peter & Mohren, Frits & van Ierland, Ekko C., 2016. "The potential of REDD+ for carbon sequestration in tropical forests: Supply curves for carbon storage for Kalimantan, Indonesia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 1-10.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31380-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.