IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38911-w.html
   My bibliography  Save this article

Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen

Author

Listed:
  • Songbai Hong

    (College of Urban and Environmental Sciences, Peking University)

  • Jinzhi Ding

    (Institute of Tibetan Plateau Research, Chinese Academy of Sciences)

  • Fei Kan

    (College of Urban and Environmental Sciences, Peking University)

  • Hao Xu

    (College of Urban and Environmental Sciences, Peking University)

  • Shaoyuan Chen

    (College of Urban and Environmental Sciences, Peking University)

  • Yitong Yao

    (Division of Geological and Planetary Sciences, California Institute of Technology)

  • Shilong Piao

    (College of Urban and Environmental Sciences, Peking University
    Institute of Tibetan Plateau Research, Chinese Academy of Sciences)

Abstract

Forestation is regarded as an effective strategy for increasing terrestrial carbon sequestration. However, its carbon sink potential remains uncertain due to the scarcity of large-scale sampling data and limited knowledge of the linkage between plant and soil C dynamics. Here, we conduct a large-scale survey of 163 control plots and 614 forested plots involving 25304 trees and 11700 soil samples in northern China to fill this knowledge gap. We find that forestation in northern China contributes a significant carbon sink (913.19 ± 47.58 Tg C), 74% of which is stored in biomass and 26% in soil organic carbon. Further analysis reveals that the biomass carbon sink increases initially but then decreases as soil nitrogen increases, while soil organic carbon significantly decreases in nitrogen-rich soils. These results highlight the importance of incorporating plant and soil interactions, modulated by nitrogen supply in the calculation and modelling of current and future carbon sink potential.

Suggested Citation

  • Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38911-w
    DOI: 10.1038/s41467-023-38911-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38911-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38911-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Terrer & R. P. Phillips & B. A. Hungate & J. Rosende & J. Pett-Ridge & M. E. Craig & K. J. Groenigen & T. F. Keenan & B. N. Sulman & B. D. Stocker & P. B. Reich & A. F. A. Pellegrini & E. Pendall &, 2021. "A trade-off between plant and soil carbon storage under elevated CO2," Nature, Nature, vol. 591(7851), pages 599-603, March.
    2. Iain P. Hartley & Mark H. Garnett & Martin Sommerkorn & David W. Hopkins & Benjamin J. Fletcher & Victoria L. Sloan & Gareth K. Phoenix & Philip A. Wookey, 2012. "A potential loss of carbon associated with greater plant growth in the European Arctic," Nature Climate Change, Nature, vol. 2(12), pages 875-879, December.
    3. Nan Lu & Hanqin Tian & Bojie Fu & Huiqian Yu & Shilong Piao & Shiyin Chen & Ya Li & Xiaoyong Li & Mengyu Wang & Zidong Li & Lu Zhang & Philippe Ciais & Pete Smith, 2022. "Biophysical and economic constraints on China’s natural climate solutions," Nature Climate Change, Nature, vol. 12(9), pages 847-853, September.
    4. Jacob J. Bukoski & Susan C. Cook-Patton & Cyril Melikov & Hongyi Ban & Jessica L. Chen & Elizabeth D. Goldman & Nancy L. Harris & Matthew D. Potts, 2022. "Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Songbai Hong & Shilong Piao & Anping Chen & Yongwen Liu & Lingli Liu & Shushi Peng & Jordi Sardans & Yan Sun & Josep Peñuelas & Hui Zeng, 2018. "Afforestation neutralizes soil pH," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    6. Songbai Hong & Guodong Yin & Shilong Piao & Ray Dybzinski & Nan Cong & Xiangyi Li & Kai Wang & Josep Peñuelas & Hui Zeng & Anping Chen, 2020. "Divergent responses of soil organic carbon to afforestation," Nature Sustainability, Nature, vol. 3(9), pages 694-700, September.
    7. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    8. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    9. Yi Y. Liu & Albert I. J. M. van Dijk & Richard A. M. de Jeu & Josep G. Canadell & Matthew F. McCabe & Jason P. Evans & Guojie Wang, 2015. "Recent reversal in loss of global terrestrial biomass," Nature Climate Change, Nature, vol. 5(5), pages 470-474, May.
    10. Martin Jung & Markus Reichstein & Philippe Ciais & Sonia I. Seneviratne & Justin Sheffield & Michael L. Goulden & Gordon Bonan & Alessandro Cescatti & Jiquan Chen & Richard de Jeu & A. Johannes Dolman, 2010. "Recent decline in the global land evapotranspiration trend due to limited moisture supply," Nature, Nature, vol. 467(7318), pages 951-954, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    2. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    7. Liangsheng Zhang & Haijiang Luo & Xuezhen Zhang, 2022. "Land-Greening Hotspot Changes in the Yangtze River Economic Belt during the Last Four Decades and Their Connections to Human Activities," Land, MDPI, vol. 11(5), pages 1-17, April.
    8. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    9. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    10. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    11. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    12. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    13. Viktoriia Lovynska & Yuriy Buchavyi & Petro Lakyda & Svitlana Sytnyk & Yuriy Gritzan & Roman Sendziuk, 2020. "Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(8), pages 339-348.
    14. Asik Dutta & Ranjan Bhattacharyya & Raimundo Jiménez-Ballesta & Abir Dey & Namita Das Saha & Sarvendra Kumar & Chaitanya Prasad Nath & Ved Prakash & Surendra Singh Jatav & Abhik Patra, 2023. "Conventional and Zero Tillage with Residue Management in Rice–Wheat System in the Indo-Gangetic Plains: Impact on Thermal Sensitivity of Soil Organic Carbon Respiration and Enzyme Activity," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    15. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    16. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    17. Coletti, Janaine Z. & Hinz, Christoph & Vogwill, Ryan & Hipsey, Matthew R., 2013. "Hydrological controls on carbon metabolism in wetlands," Ecological Modelling, Elsevier, vol. 249(C), pages 3-18.
    18. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    20. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38911-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.