IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v7y2017i8d10.1038_nclimate3338.html
   My bibliography  Save this article

Balancing Europe’s wind-power output through spatial deployment informed by weather regimes

Author

Listed:
  • Christian M. Grams

    (Institute for Atmospheric and Climate Science)

  • Remo Beerli

    (Institute for Atmospheric and Climate Science)

  • Stefan Pfenninger

    (Climate Policy Group, Institute for Environmental Decisions)

  • Iain Staffell

    (Centre for Environmental Policy, Imperial College London)

  • Heini Wernli

    (Institute for Atmospheric and Climate Science)

Abstract

Weather regimes drive variability in wind-power generation across Europe, affecting energy security. Strategically deployed wind turbines in regions of contrasting weather regime behaviour can be used to balance wind capacity and minimize output variability.

Suggested Citation

  • Christian M. Grams & Remo Beerli & Stefan Pfenninger & Iain Staffell & Heini Wernli, 2017. "Balancing Europe’s wind-power output through spatial deployment informed by weather regimes," Nature Climate Change, Nature, vol. 7(8), pages 557-562, August.
  • Handle: RePEc:nat:natcli:v:7:y:2017:i:8:d:10.1038_nclimate3338
    DOI: 10.1038/nclimate3338
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3338
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    3. Denis Juma & Josiah Munda & Charles Kabiri, 2023. "Power-System Flexibility: A Necessary Complement to Variable Renewable Energy Optimal Capacity Configuration," Energies, MDPI, vol. 16(21), pages 1-24, November.
    4. Radu, David & Berger, Mathias & Dubois, Antoine & Fonteneau, Raphaël & Pandžić, Hrvoje & Dvorkin, Yury & Louveaux, Quentin & Ernst, Damien, 2022. "Assessing the impact of offshore wind siting strategies on the design of the European power system," Applied Energy, Elsevier, vol. 305(C).
    5. Hsun-Ming Hu & Chuan-Chou Shen & John C. H. Chiang & Valerie Trouet & Véronique Michel & Hsien-Chen Tsai & Patricia Valensi & Christoph Spötl & Elisabetta Starnini & Marta Zunino & Wei-Yi Chien & Wen-, 2022. "Split westerlies over Europe in the early Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.
    7. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    8. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    9. Biancardi, Andrea & Di Castelnuovo, Matteo & Staffell, Iain, 2021. "A framework to evaluate how European Transmission System Operators approach innovation," Energy Policy, Elsevier, vol. 158(C).
    10. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    11. Lledó, Llorenç & Ramon, Jaume & Soret, Albert & Doblas-Reyes, Francisco-Javier, 2022. "Seasonal prediction of renewable energy generation in Europe based on four teleconnection indices," Renewable Energy, Elsevier, vol. 186(C), pages 420-430.
    12. Jung, Christopher & Schindler, Dirk, 2023. "Introducing a new wind speed complementarity model," Energy, Elsevier, vol. 265(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:8:d:10.1038_nclimate3338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.