IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v50y2023i5d10.1007_s11116-022-10294-9.html
   My bibliography  Save this article

A joint demand modeling framework for ride-sourcing and dynamic ridesharing services: a geo-additive Markov random field based heterogeneous copula framework

Author

Listed:
  • Behram Wali

    (Massachusetts Institute of Technology)

  • Paolo Santi

    (Massachusetts Institute of Technology
    Istituto di Informatica e Telematica)

  • Carlo Ratti

    (Massachusetts Institute of Technology)

Abstract

Promoting sustainable transportation, ride-sourcing and dynamic ridesharing (DRS) services have transformative impacts on mobility, congestion, and emissions. As emerging mobility options, the demand for ride-sourcing and DRS services has rarely been simultaneously examined. This study contributes to filling this gap by jointly analyzing the demand for ride-sourcing and DRS services and examining how it varies across neighborhood-level built environment, transit accessibility and crime, behavioral, and sociodemographic factors. To achieve these objectives, unique geo-coded data containing millions of ride-sourcing and DRS trips in Chicago are spatially joined with up-to-date data on the built environment, transit accessibility, crime, active travel, and demographic factors. A novel Markov Random Field-based joint heterogeneous geo-additive copula framework is presented to simultaneously capture random, systematic, and spatial heterogeneity. Characterized by a Frank copula structure, the demand for ride-sourcing and DRS services exhibited a non-linear stochastic dependence pattern. With spatial heterogeneity and spillover effects, the stochastic dependence of ride-sourcing and DRS demand varied across time of day and was the strongest in compact and dense neighborhoods. Key aspects of the built environment related to urban design (pedestrian-oriented infrastructure), density, and land-use diversity were positively associated with ride-sourcing and DRS demand—suggesting that sustainable mobility goals can be achieved by continuing to invest in more walkable neighborhoods. Active travel and telecommuting were positively linked with ride-sourcing and DRS demand. Complementary and substitutive effects for transit accessibility were found. Results show that increasing transit accessibility in areas with low levels of accessibility (compared to those with high transit levels) could be more helpful in increasing the adoption of ride-sourcing and DRS services. Relative to ride-sourcing, the demand for DRS services appeared more responsive to improvements in pedestrian-infrastructure and transit accessibility. Quantification of non-linear associations with ceiling and overdose effects for the built environment, vehicle ownership, and transit accessibility provided deeper insights. The findings can help guide the development of policy interventions and investment decisions to further accelerate the adoption of mobility-on-demand systems.

Suggested Citation

  • Behram Wali & Paolo Santi & Carlo Ratti, 2023. "A joint demand modeling framework for ride-sourcing and dynamic ridesharing services: a geo-additive Markov random field based heterogeneous copula framework," Transportation, Springer, vol. 50(5), pages 1809-1845, October.
  • Handle: RePEc:kap:transp:v:50:y:2023:i:5:d:10.1007_s11116-022-10294-9
    DOI: 10.1007/s11116-022-10294-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-022-10294-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-022-10294-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    3. Deka, Devajyoti & Fei, Da, 2019. "A comparison of the personal and neighborhood characteristics associated with ridesourcing, transit use, and driving with NHTS data," Journal of Transport Geography, Elsevier, vol. 76(C), pages 24-33.
    4. Walls, Margaret & Safirova, Elena, 2004. "A Review of the Literature on Telecommuting and Its Implications for Vehicle Travel and Emissions," Discussion Papers 10492, Resources for the Future.
    5. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    6. Catherine Morency, 2007. "The ambivalence of ridesharing," Transportation, Springer, vol. 34(2), pages 239-253, March.
    7. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    8. Bhat, Chandra R., 1998. "Accommodating flexible substitution patterns in multi-dimensional choice modeling: formulation and application to travel mode and departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 455-466, September.
    9. Haitao Yu & Zhong-Ren Peng, 2020. "The impacts of built environment on ridesourcing demand: A neighbourhood level analysis in Austin, Texas," Urban Studies, Urban Studies Journal Limited, vol. 57(1), pages 152-175, January.
    10. Adam Stocker & Susan Shaheen, 2017. "Shared Automated Vehicles: Review of Business Models," International Transport Forum Discussion Papers 2017/09, OECD Publishing.
    11. Yuanyuan Zhang & Yuming Zhang, 2018. "Exploring the Relationship between Ridesharing and Public Transit Use in the United States," IJERPH, MDPI, vol. 15(8), pages 1-23, August.
    12. Diep Ngoc Su & Duy Quy Nguyen-Phuoc & Lester W. Johnson, 2021. "Effects of perceived safety, involvement and perceived service quality on loyalty intention among ride-sourcing passengers," Transportation, Springer, vol. 48(1), pages 369-393, February.
    13. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    14. Donald Anderson, 2014. "“Not just a taxi”? For-profit ridesharing, driver strategies, and VMT," Transportation, Springer, vol. 41(5), pages 1099-1117, September.
    15. Cervero, Robert, 1989. "Land-Use Mixing and Suburban Mobility," University of California Transportation Center, Working Papers qt4nf7k1v9, University of California Transportation Center.
    16. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    17. Kim, Seung-Nam & Choo, Sangho & Mokhtarian, Patricia L., 2015. "Home-based telecommuting and intra-household interactions in work and non-work travel: A seemingly unrelated censored regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 197-214.
    18. Brown, Anne E., 2020. "Who and where rideshares? Rideshare travel and use in Los Angeles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 120-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    2. Loa, Patrick & Hossain, Sanjana & Liu, Yicong & Nurul Habib, Khandker, 2022. "How has the COVID-19 pandemic affected the use of ride-sourcing services? An empirical evidence-based investigation for the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 46-62.
    3. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    4. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    5. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    6. Loa, Patrick & Nurul Habib, Khandker, 2021. "Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 13-28.
    7. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Ghazaleh Azimi & Alireza Rahimi & Xia Jin, 2022. "Exploring the attitudes of Millennials and Generation Xers toward ridesourcing services," Transportation, Springer, vol. 49(6), pages 1765-1799, December.
    10. Yuan Liang & Bingjie Yu & Xiaojian Zhang & Yi Lu & Linchuan Yang, 2022. "The Short-term Impact of Congestion Taxes on Ridesourcing Demand and Traffic Congestion: Evidence from Chicago," Papers 2207.01793, arXiv.org, revised Feb 2023.
    11. Haoran Chen & Xuedong Yan & Xiaobing Liu & Tao Ma, 2023. "Exploring the operational performance discrepancies between online ridesplitting and carpooling transportation modes based on DiDi data," Transportation, Springer, vol. 50(5), pages 1923-1958, October.
    12. Morteza Taiebat & Elham Amini & Ming Xu, 2022. "Sharing Behavior in Ride-hailing Trips: A Machine Learning Inference Approach," Papers 2201.12696, arXiv.org.
    13. Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    14. Rico Krueger & Michel Bierlaire & Prateek Bansal, 2022. "A Data Fusion Approach for Ride-sourcing Demand Estimation: A Discrete Choice Model with Sampling and Endogeneity Corrections," Papers 2212.02178, arXiv.org.
    15. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    16. Shasha Liu & Toshiyuki Yamamoto & Enjian Yao, 2023. "Joint modeling of mode choice and travel distance with intra-household interactions," Transportation, Springer, vol. 50(5), pages 1527-1552, October.
    17. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    18. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    19. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    20. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:50:y:2023:i:5:d:10.1007_s11116-022-10294-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.